Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T13:42:54.124Z Has data issue: false hasContentIssue false

Mid-term outcomes after catheter ablation in patients with congenital heart disease

Published online by Cambridge University Press:  13 October 2023

Diogo Faim*
Affiliation:
Paediatric Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Pedro A. Sousa
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Carolina Saleiro
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Andreia Palma
Affiliation:
Paediatric Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Andreia Francisco
Affiliation:
Paediatric Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Natália António
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal Faculty of Medicine, ICBR, University of Coimbra, Coimbra, Portugal
João Cristóvão
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Luís Elvas
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Lino Gonçalves
Affiliation:
Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal Faculty of Medicine, ICBR, University of Coimbra, Coimbra, Portugal
António Pires
Affiliation:
Paediatric Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal Faculty of Medicine, ICBR, University of Coimbra, Coimbra, Portugal
*
Corresponding author: D. Faim; Email: diogofaim92@gmail.com

Abstract

Introduction:

Cardiac arrhythmias are a major concern in patients with CHD. The purpose of this study was to evaluate the long-term outcomes in patients with CHD submitted to catheter ablation.

Materials and Methods:

Observational retrospective study of patients with CHD referred for catheter ablation from January 2016 to December 2021 in a tertiary referral centre. Acute procedural endpoints and long-term outcomes were assessed.

Results:

A total of 44 ablation procedures were performed in 36 CHD patients (55% male, mean age 43 ±3 years). Fifty-four arrhythmias were ablated: 23 cavotricuspid isthmus atrial flutters, 10 atrial re-entrant tachycardias, eight focal atrial tachycardias, eight atrial fibrillations, three atrioventricular re-entrant tachycardias, and two ventricular tachycardias. During a median follow-up time of 37 months (interquartile range 12–51), freedom from arrhythmia recurrence was achieved in 93%, with 1.2 procedures per patient (18% with anti-arrhythmic drugs). There were no adverse events related to catheter ablation. No predictors of recurrence were identified.

Conclusion:

In patients with CHD, catheter ablation presents a high mid-term efficacy while maintaining a safe profile.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dolk, H, Loane, M, Garne, E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 2011; 123: 841849.10.1161/CIRCULATIONAHA.110.958405CrossRefGoogle ScholarPubMed
Bouchardy, J, Therrien, J, Pilote, L, et al. Atrial arrhythmias in adults with congenital heart disease. Circulation 2009; 120: 16791686.10.1161/CIRCULATIONAHA.109.866319CrossRefGoogle ScholarPubMed
Abrams, DJ. Invasive electrophysiology in paediatric and congenital heart disease. Heart 2007; 93: 383391.10.1136/hrt.2005.069245CrossRefGoogle ScholarPubMed
de Miguel, IM, Ávila, P. Atrial fibrillation in congenital heart disease. Eur Cardiol 2021; 16: e06.10.15420/ecr.2020.41CrossRefGoogle Scholar
Karbassi, A, Nair, K, Harris, L, et al. Atrial tachyarrhythmia in adult congenital heart disease. World J Cardiol 2017; 9: 496.10.4330/wjc.v9.i6.496CrossRefGoogle ScholarPubMed
Bradley, EA, Zaidi, AN, Morrison, J, et al. Effectiveness of early invasive therapy for atrial tachycardia in adult atrial-baffle survivors. Texas Hear Inst J 2017; 44: 1621.10.14503/THIJ-15-5470CrossRefGoogle ScholarPubMed
Gallotti, RG, Madnawat, H, Shannon, KM, et al. Mechanisms and predictors of recurrent tachycardia after catheter ablation for d-transposition of the great arteries after the mustard or senning operation. Hear Rhythm 2017; 14: 350356.10.1016/j.hrthm.2016.11.031CrossRefGoogle ScholarPubMed
Moore, JP, Shannon, KM, Fish, FA, et al. Catheter ablation of supraventricular tachyarrhythmia after extracardiac Fontan surgery. Hear Rhythm 2016; 13: 18911897.CrossRefGoogle ScholarPubMed
Khairy, P, van Hare, GF, Balaji, S, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Can J Cardiol 2014; 30: e163.CrossRefGoogle ScholarPubMed
Franklin, RCG, Béland, MJ, Colan, SD, et al. Nomenclature for congenital and paediatric cardiac disease: the international paediatric and congenital cardiac code (IPCCC) and the eleventh iteration of the international classification of diseases (ICD-11). Cardiol Young 2017; 27: 18721938.10.1017/S1047951117002244CrossRefGoogle ScholarPubMed
Palma, A, Sousa, PA, Silva, P, etal, V. Transbaffle puncture using multimodality imaging and 3-d mapping with ct image integration in a patient with atrial flutter post-senning procedure. Arq Bras Cardiol 2021; 117: 153156.CrossRefGoogle Scholar
Schulman, S, Kearon, C. Subcommittee on control of anticoagulation of the scientific and standardization committee of the international society on thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in nonsurgical patients. J Thromb Haemost 2005; 3: 692694.10.1111/j.1538-7836.2005.01204.xCrossRefGoogle Scholar
Hebe, J, Hansen, P, Ouyang, F, et al. Radiofrequency catheter ablation of tachycardia in patients with congenital heart disease. Pediatr Cardiol 2000; 21: 557575.CrossRefGoogle ScholarPubMed
Lukac, P, Pedersen, AK, Mortensen, PT, et al. Ablation of atrial tachycardia after surgery for congenital and acquired heart disease using an electroanatomic mapping system : which circuits to expect in which substrate? Heart Rhythm 2005; 2: 6472.CrossRefGoogle ScholarPubMed
Jiang, H, Li, XM, Zhang, Y, et al. Electrophysiological characteristics and outcomes of radiofrequency catheter ablation of atrial flutter in children with or without congenital heart disease. Pediatr Cardiol 2020; 41: 15091514.10.1007/s00246-020-02406-yCrossRefGoogle ScholarPubMed
Liang, JJ, Frankel, DS, Parikh, V, et al. Safety and outcomes of catheter ablation for atrial fibrillation in adults with congenital heart disease: a multicenter registry study. Hear Rhythm 2019; 16: 846852.10.1016/j.hrthm.2018.12.024CrossRefGoogle ScholarPubMed
Philip, F, Muhammad, KI, Agarwal, S, et al. Pulmonary vein isolation for the treatment of drug-refractory atrial fibrillation in adults with congenital heart disease. Congenit Heart Dis 2012; 7: 392399.10.1111/j.1747-0803.2012.00649.xCrossRefGoogle ScholarPubMed
Wasmer, K, Eckardt, L, Baumgartner, H, et al. Therapy of supraventricular and ventricular arrhythmias in adults with congenital heart disease—narrative review. Cardiovasc Diagn Ther 2021; 11: 550562.CrossRefGoogle ScholarPubMed
Amaral, MA, Sousa, PA, António, N, et al. Atrial tachycardia ablation in surgically treated congenital heart disease. Rev Port Cardiol 2018; 37: 271275.10.1016/j.repc.2017.06.011CrossRefGoogle ScholarPubMed
Waldmann, V, Bessière, F, Raimondo, C, et al. Atrial flutter catheter ablation in adult congenital heart diseases. Indian Pacing Electrophysiol J 2021; 21: 291302.10.1016/j.ipej.2021.06.003CrossRefGoogle ScholarPubMed
Greenwood, RD, Rosenthal, A, Sloss, l, et al. Sick sinus syndrome after surgery for congenital heart disease. Circulation 1975; 52: 208213. DOI: 10.1161/01.cir.52.2.208.10.1161/01.CIR.52.2.208CrossRefGoogle ScholarPubMed
Sherwin, ED, Triedman, JK, Walsh, EP. Update on interventional electrophysiology in congenital heart disease evolving solutions for complex hearts. Circ Arrhythmia Electrophysiol 2013; 6: 10321040.CrossRefGoogle ScholarPubMed