Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T04:22:35.560Z Has data issue: false hasContentIssue false

Photocatalytic decolourization of methylene blue using [Zn-Al] layered double hydroxides synthesized at different molar cationic ratios

Published online by Cambridge University Press:  02 January 2018

Kaouther Abderrazek*
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Borj Cédria, Tunisie Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie
Najoua Frini Srasra
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Borj Cédria, Tunisie Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie
Ezzeddine Srasra
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Borj Cédria, Tunisie Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie

Abstract

[Zn-Al] layered double hydroxides (LDH) with cationic molar ratios of R = Zn/Al 1–5 were synthesized by the coprecipitation method at constant pH = 10. The samples synthesized and their derived forms obtained after calcination at 500°C and at 900°C (denoted Zn-Al-R, Zn-Al-R-500 and Zn-Al-R-900, respectively), were characterized by X-ray diffraction (XRD), inductively coupled plasmamass spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, diffuse reflectance spectroscopy and nitrogen physisorption at −196°C. The XRD study showed: (1) the presence of accessory ZnO with the LDH in samples synthesized with R ≥ 3; and (2) the lamellar structure was destroyed at 500°C which made room for a poorly ordered ZnO phase, while calcination at 900°C yielded well crystallized ZnO and ZnAl2O4. The photocatalytic activity of the calcined and the unheated samples was evaluated for the decolourization of methylene blue. The photocatalytic activity was dependent on the cationic ratio R and on the calcination temperature. The sample Zn-Al-3 displayed maximum photocatalytic activity. Calcination at 500 and 900°C improved the photocatalytic activity of LDH synthesized at R = 1 and 2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderrazek, K., Najoua, F.S. & Srasra, E. (2016) Synthesis and characterization of [Zn–Al] LDH: Study of the effect of calcination on the photocatalytic activity. Applied Clay Science, 119, 229235.Google Scholar
Akpan, U.G. & Hameed, B.H. (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2- based photocatalysts: a review. Journal of Hazardous Materials, 170, 520529.Google Scholar
Allmann, R. (1970) Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1−xMe (III)x(OH)2]x+. Chimia, 24(99), 108.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimoleculer layers. Journal of the American Chemical Society, 60, 309319.Google Scholar
Carriazo, D., Del Arco, M., Garcia-Lopez, E., Marci, G., Martin, C., Palmisano, L. & Rives, V. (2011) Zn, Al hydrotalcites calcined at different temperatures: Preparation, characterization and photocatalytic activity in a gas–solid regime. Journal of Molecular Catalysis A, 342, 8390.CrossRefGoogle Scholar
Cheng, X., Huang, X., Wang, X. & Sun, D. (2010) Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor. Journal of Hazardous Materials, 177, 516523.Google Scholar
Colón, G., Sanchez-Espana, J.M., Hidalgo, M.C. & Navío J.A. (2006) Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 179, 2027.Google Scholar
Comparelli, R., Fanizza, E., Curri, M.L., Cozzoli, P.D., Mascolo, G. & Agostiano, A. (2005) UV-induced photocatalytic degradation of azo dyes by organiccapped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60, 111.Google Scholar
Farhadi, S. & Panahandehjoo, S. (2010) Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: a novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions. Applied Catalysis A: General, 382, 293302.Google Scholar
Fil, B.A., Özmetin, C. & Korkmaz, M. (2012) Cationic dye (methylene blue) removal from aqueous solution by montmorillonite. Bulletin of the Korean Chemical Society, 33, 31843190.Google Scholar
Fu, H., Pan, C., Yao, W. & Zhu, Y. (2005) Visible-lightinduced degradation of rhodamine B by nanosized Bi2WO6. Journal of Physical Chemistry B, 109, 2243222439.Google Scholar
Guo, Y., Li, D., Hu, C., Wang, Y., Wang, E., Zhou, Y. & Feng, S. (2001) Photocatalytic degradation of aqueous organochlorine pesticide on the layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24)·4H2O. Applied Catalysis B, 30, 337349.Google Scholar
Hadnađjev-Kostić, M.S., Vulić, T.J., Zorić, D.B. & Marinković-Nedučin, R.P. (2012) The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides. Chemical Industry & Chemical Engineering Quarterly, 18, 295303.CrossRefGoogle Scholar
Hadnadjev-Kostić, M.S., Vulić, T., Ranogajec, J., Marinković-Nedučin, R. & Radosavljevic-Mihajlovic, A. (2013) Thermal and photocatalytic behavior of Ti/LDH nanocomposites. Journal of Thermal Analysis and Calorimetry, 111, 11551162.Google Scholar
Hu, C., Jimmy, C.Y., Hao, Z. & Wong, P.K. (2003) Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Applied Catalysis B: Environmental, 46, 3547.Google Scholar
Kansal, S.K., Singh, M. & Sud, D. (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 141, 581590.CrossRefGoogle ScholarPubMed
Liao, S., Donggen, H., Yu, D., Su, Y. & Yuan, G. (2004) Preparation and characterization of ZnO/TiO2, SO4 2−/ ZnO/TiO2 photocatalyst and their photocatalysis. Journal of Photochemistry and Photobiology. A: Chemistry, 168, 713.Google Scholar
Mandal, S. & Mayadevi, S. (2008) Adsorption of fluoride ions by Zn-Al layered double hydroxides. Applied Clay Science, 40, 5462.Google Scholar
Morales, A.E., Mora, E.S. & Pal, U. (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Física, 53(5), 1822.Google Scholar
Ohtani, B. (2011) Photocatalysis A to Z – what we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C, 11, 157178.CrossRefGoogle Scholar
Parida, K.M., Sahu, N., Biswal, N.R., Naik, B. & Pradhan, A.C. (2008) Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. Journal of Colloid Interface Science, 318, 231237.Google Scholar
Patzkό, Á., Kun, R., Hornok, V., Deacute;kány, I., Engelhardt, T. & Schall, N. (2005) ZnAl-layered double hydroxides as photocatalysts for oxidation of phenol in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265, 6472.Google Scholar
Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P. & Krishnan-Ayer, R. (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 171192.CrossRefGoogle Scholar
Rivera, J.A., Fetter, G., Jimeacutenez, Y., Xochipa, M.M. & Bosch, P. (2007) Nickel distribution in (Ni, Mg)/Allayered double hydroxides. Applied Catalysis A: General, 316, 207211.Google Scholar
Seftel, E.M., Popovici, E., Mertens, M., De Witte, K., Van Tendeloo, G., Cool, P. & Vansant, E.F. (2008) Zn-Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous and Mesoporous Materials, 113, 296304.Google Scholar
Shannon, R.T. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32, 751767.Google Scholar
Shao, M., Han, J., Wei, M., Evans, D.G. & Duan, X. (2011) The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis. Chemical Engineering Journal, 168, 519524.Google Scholar
Stylidi, M., Kondarides, D.I. & Verykios, X.E. (2004) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 40, 271286.CrossRefGoogle Scholar
Vaccari, A. (1999) Clays and catalysis: a promising future. Applied Clay Science, 14, 161198.Google Scholar
Wu, L., Jimmy, C.Y. & Fu, X. (2006) Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A: Chemistry, 244, 2532.Google Scholar
Xiong, S.F., Yin, Z.L., Yuan, Z.F., Yan, W.B., Yang, W.Y., Liu, J.J. & Zhang, F. (2012) Dual-frequency (20/40 kHz) ultrasonic assisted photocatalysis for degradation of methylene blue effluent: Synergistic effect and kinetic study. Ultrasonics Sonochemistry, 19, 756761.Google Scholar
Yang, L. & Kruse, B. (2004) Revised Kubelka–Munk theory. I. Theory and application. Journal of the Optical Society of America, 21, 19331941.Google Scholar
Yuan, S., Shi, L., Wu, J., Fang, J. & Zhao, Y. (2009) Highly ordered TiO2 nanotube array as recyclable catalyst for the sonophotocatalytic degradation of methylene blue. Catalysis Communications, 10, 11881191.Google Scholar
Zhang, L., Yan, J., Zhou, M., Yang, Y. & Liu, Y.N. (2013) Fabrication and photocatalytic properties of spheresin- spheres ZnO/ZnAl2O4 composite hollow microspheres. Applied Surface Science, 268, 237245.Google Scholar
Zhao, X., Wang, L., Xu, X., Lei, X., Xu, S. & Zhang, F. (2012) Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network. AlChE Journal, 58, 573582.CrossRefGoogle Scholar