Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T08:29:05.563Z Has data issue: false hasContentIssue false

An infrared reflectance study of Si–O vibrations in thermally treated alkali-saturated montmorillonites

Published online by Cambridge University Press:  09 July 2018

M. A. Karakassides
Affiliation:
Institute of Materials Science, NCSR «Demokritos», 153 10 Ag. Paraskevi Attikis, Greece
D. Gournis
Affiliation:
Institute of Materials Science, NCSR «Demokritos», 153 10 Ag. Paraskevi Attikis, Greece
D. Petridis
Affiliation:
Institute of Materials Science, NCSR «Demokritos», 153 10 Ag. Paraskevi Attikis, Greece

Abstract

Infrared reflectance spectra of Li-, Na-, K-, Rb- and Cs-saturated samples of montmorillonite Zenith-N (Milos, Greece) have been measured in the 400–1300 cm-1 region in an attempt to elucidate the behaviour and migration properties of alkali cations after heating the montmorillonites at 300°C for 24 h. Deconvolution of the complex Si–O stretching band reveals that the component band that arises from the asymmetric stretching vibrations of the silicon-apical oxygen units exhibits the biggest change upon heating the montmorillonites. The normalized absorption area of this band has been correlated with the decrease in the layer charge due to the cation migration. Analysis of the IR data for each alkali-saturated montmorillonite has shown that only Li+ migrates near, or to, vacant octahedral sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvero, R., Alba, M.D., Castro, M.A. & Trillo, J.M. (1994) Reversible migration of lithium in montmorillonite. J. Phys. Chem. 98, 78487853.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner. 19, 175186.CrossRefGoogle Scholar
Chorom, M. & Pengasamy, P. (1996) Effects of heating on swelling and dispersion of different cationic forms of a smectite. Clays Clay Miner. 44, 783790.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of layered silicates. Spectrochim. Acta. 20, 11491173.CrossRefGoogle Scholar
Heller-Kallai, L. & Mosser, C. (1995) Migration of Cu ions in Cu montmorillonites heated with and without alkali halides. Clays Clay Miner. 43, 738743.Google Scholar
Hofmann, V. & Klemen, R. (1950) Verlust der Austauschfahiqkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Allg. Chem. 262, 9599.Google Scholar
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge and lithium retention in heated Lisaturated smectites. Clays Clay Miner. 35, 440448.Google Scholar
Kamitsos, E.I., Patsis AP. & Chryssikos, G.D. (1993) Infrared reflectance investigation of alkali diborate glasses. J. Non Cryst. Solids. 152, 246257.Google Scholar
Karakassides, M.A., Gournis, D. & Petridis, D. (1997) Infrared Reflectance study of thermally treated Li- and Cs-montmorillonites. Clays Clay Miner. 45, 649658.Google Scholar
Kitajima, K. & Takusagawa, N. (1990) Effects of tetrahedral isomorphic substitution on the IR spectra of synthetic fluorine micas. Clay Miner. 25, 235241.Google Scholar
Kitajima, K., Taruta, S. & Takusagawa, N. (1991) Effects of layer charge on the IR spectra of synthetic fluorine micas. Clay Miner. 26, 435440.Google Scholar
Komadel, P., Bujdák, J., Madejová J., Sucha, V. & Elsass, F. (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Miner. 31, 333345.Google Scholar
Lerot, L. & Low, P.F. (1976) Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays Clay Miner. 24, 191199.CrossRefGoogle Scholar
Luca, V. & Cardile CM. (1988) Thermally induced cation migration in Na and Li montmorillonites. Phys. Chem. Miner. 16, 98103.Google Scholar
Madejovà, J., Bujdak, J., Gates, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents. Clay Miner. 31, 233241.Google Scholar
Rhodes, C.N. & Brown, D.R. (1994) Rapid determination of the cation exchange capacity of clays using Co(II). Clay Miner. 29, 799801.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751767.Google Scholar
Sposito, G., Prost, R. & Gaultier, J.P. (1983) Infrared spectroscopic study of absorbed water in reduced charged Na/Li-montmorilonites. Clays Clay Miner. 31, 916.Google Scholar
Tennakoon, D.T.B., Thomas, J.M., Jones, W., Carpenter, T. & Ramdas, S. (1986) Characterization of clays and clay-organic systems. I Chem. Soc. Faraday Trans. I. 82, 545562.CrossRefGoogle Scholar
Tettenhorst, R. (1962) Cation migration in montmorillonites. Am. Miner. 47, 769773.Google Scholar
Yan, L., Roth, C.B. & Low, F.P. (1996) Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer water. Langmuir. 12, 44214429.CrossRefGoogle Scholar