Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:46:34.728Z Has data issue: false hasContentIssue false

Influence of aluminium incorporation in the preparation of zirconia-pillared clay and catalytic performance in the acetalization reaction

Published online by Cambridge University Press:  09 July 2018

S. Mnasri*
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole Borj Cédria, BP 95-2050 Hammam-Lif, Tunisia
N. Frini-Srasra
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole Borj Cédria, BP 95-2050 Hammam-Lif, Tunisia Départements de Chimie, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia

Abstract

The exchange reaction of Na-bentonite with zirconium pillars gives products which suffer from a loss of crystallinity, with basal spacing about 18 Å and surface area of 200 m2 g–1. Aluminium introduced in different amounts in the zirconium intercalated solution leads to an improvement in the stability and crystallinity of zirconia-pillared clays (Zr-PILCs) and creates pillared clays with new properties. Adding a small amount of Al (10 molar %) leads to an increase of d001 from 18 Å to 20.5 Å and an increase of the percentage of introduced zirconium from 16.71 to 21, expressed as ZrO2 wt.%, accompanied by an increase of the Brönsted and Lewis acidic sites. The acetalization of acetone with ethylene glycol was studied in order to compare the activity of PILCs. The results show that the yield of the aforementioned reaction depends strongly of the composition and acidity of the catalyst.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avena, M.J., Cabrol, R. & de Pauli, C.P. (1990) Study of some physicochemical properties of pillared monmorillonite: acid-base potentiometric titrations and electophoretic measurements. Clays and Clay Minerals, 38, 356–362.CrossRefGoogle Scholar
Awate, S.V., Waghmode, S.B. & Agashe, M.S. (2004) Synthesis, characterization and catalytic evaluation of zirconia-pillared montmorillonite for linear alkylation of benzene. Catalysis Communications, 5, 407–411.Google Scholar
Bahranowski, K., Grabowski, R., Grzybowska, B., Kielski, A., Serwicka, E.M., Wcisło, K., Wisła-Walsh, E. & Wodnicka, K. (2000) Synthesis and physicochemical properties of vanadium-doped zirconia-pillared montmorillonites in relation to oxidative dehydrogenation of propane. Topics in Catalysis, 11/12, 255–261.Google Scholar
Ben Chaabene, S., Bergaoui, L., Ghorbel, A., Lambert, J.F. & Grange, P. (2004) In situ preparation of zirconium sulfate pillared clay: study of acidic properties. Applied Catalysis A: General, 268, 25–31.Google Scholar
Bergaoui, L. (1994) Mécanisme d’intercalation-pontage et propriété adsorptive vis à vis de Cd2+ et Cu2+ de saponite à piliers aluminique. Ph.D. Thesis, Université Pierre et Marie Curie, Paris.Google Scholar
Bouberka, Z., Khenifi, A., Ait Mahamed, H., Haddou, B., Belkaid, N., Bettahar, N. & Derriche, Z. (2009) Adsorption of Supranol Yellow 4 GL from aqueous solution by surfactant-treated aluminum/chromiumintercalated bentonite. Journal of Hazaradous Materials, 162, 378–385.Google Scholar
Bouchenafa-Saïb, N., Khouli, K., & Mohammedi, O. (2007) Preparation and characterization of pillared montmorillonite: application in adsorption of cadmium. Desalination, 217, 282–290.Google Scholar
Canizares, P., Valverde, J.L., Sun-Kou, M.R. & Molina, C.B. (1999) Synthesis and characterization of PILC with single and mixed oxide pillars prepared from two different bentonites: a comparative study. Microporous and Mesoporous Materials, 29, 267–281.CrossRefGoogle Scholar
Chae, H.J., Nam, I.S., Ham, S.W. & Hong, S.B. (2001) Physicochemical characteristics of pillared interlayered clays. Catalysis Today, 68, 31–40.Google Scholar
Chapuzet, J.M., Gru, C., Labrecque, R. & Lessard, J. (2001) The electrochemical reductive cleavage of a p-nitro-1,3-dioxolane and a p-nitro-1,3-dioxane in basic aqueous ethanol at Hg: electrolabile protecting groups of ketones. Journal of Electroanalytical Chemistry, 507, 22–29.Google Scholar
Chen, M., Qi, L., Fan, L., Zhou, R. & Zheng, X. (2008) Zirconium-pillared montmorillonite and their application in supported palladium catalysts for volatile organic compounds purification. Materials Letters, 62, 3646–3648.Google Scholar
Clearfield, A. (1990) The mechanism of hydrolytic polymerization of zirconyl solutions. Journal of Materials Research, 5, 161–162.Google Scholar
Clearfield, A. & Vaughan, P.A. (1956) The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Crystallographica A, 9, 555–558.Google Scholar
Colin, J.A., de los Reyes, J.A., Vazquez, A. & Montoya, A. (2005) Pillar effects in MoS2 catalysts supported on Al and Zr pillared clays in a hydrotreatment reaction: a preliminary study. Applied Surface Science, 240, 48–62.Google Scholar
Cool, P. & Vansant, E.F. (1996) Preparation and characterization of zirconium pillared laponite and hectorite. Microporous Materials, 6, 27–36.Google Scholar
Cool, P. & Vansant, E.F. (1998) Pillared clays: preparation, characterization and applications. Pp. 265–286 in: Molecular Sieves - Science and Technology. Springer.Google Scholar
Denis, L.G., Claudio, A., Vanda, P.L. & Romulo, S.A. (2008) Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal. Journal of Hazardous Materials, 155, 230–242.Google Scholar
Dominguez, J.M., Botello-Pozos, J.C., Lopez-Ortega, A., Ramirez, M.T., Sandoval-Flores, G., & Rojas-Hernandez, A. (1998) Study of pillar precursors [Ga (III)-Al (III), Ln (III)-Al (III), Zr (IV)] for hydrothermally stable pillared clays. Catalysis Today, 43, 69–77.Google Scholar
Farfan, E.M., Dedeycker, O. & Grange, P. (1991) zirconium pillared clays, influence of basic polymerization of the precursor on their structure and stability. Studies in Surface Science and Catalysis, 63, 337–343.Google Scholar
Farfan, E.M., Sham, E. & Grange, P. (1992) Pillared clay: preparation and characterization of zirconium pillared montmorillonite. Catalysis Today, 15, 515–526.Google Scholar
Fetter, G., Hernandez, V., Rodriguez, V., Valenzuela, M.A., Lara, V.H. & Bosch, P. (2003) Effect of microwave irradiation time on the synthesis of zirconia pillared clays. Materials Letters, 57, 1220–1223.Google Scholar
Franchini, S., Prandi, A., Baraldi, A., Sorbi, S., Tait, A., Buccioni, M., Marucci, G., Cilia, A., Pirona, L., Fossa, P., Cichero, E., & Brasili, L. (2010) 1,3-dioxolanebased ligands incorporating a lactam or imide moiety: structure-affinity/activity relationship at α1-adrenoceptor subtypes and at 5-HT1A receptors. European Journal of Medicinal Chemistry, 45, 3740–3751.CrossRefGoogle ScholarPubMed
Frini, N., Crespin, M., Trabelsi, M., Messad, D., Van- Damme, H., & Bergaya, F. (1997) Preliminary results on the properties of pillared clays by mixed A1-Cu solutions. Applied Clay Science, 12, 281–292.Google Scholar
Gandia, L.M., Vicente, M.A. & Gil, A. (2000) Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Applied Catalysis A: General, 196, 281–292.Google Scholar
Gil, A., Massinon, A. & Grange, P. (1995) Analysis and comparison of the microporosity in Al-, Zr- and Tipillared clays. Microporous Materials, 4, 369–378.CrossRefGoogle Scholar
Gil, A., Gandia, L.M. & Vicente, M.A. (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catalysis Reviews: Science and Engineering, 42, 145–212.Google Scholar
Greene, T.W. (1981) Protective Groups in Organic Synthesis. Wiley, New York, p. 114.Google Scholar
Grim, R.E. (1968) Applied Clay Mineralogy. McGraw-Hill, New York, p. 265.Google Scholar
Guerra, S.R., Merat, L.M.O.C., San-Gil, R.A.S. & Dieguez, L.C. (2008) Alkylation of benzene with olefins in the presence of zirconium-pillared clays. Catalysis Today, 133, 223–230.Google Scholar
Haussonne, J.-M., Carry, C., Bowen, P. & Barton, J. (2005) Ceramiques et verres : Principes et techniques d’élaboration. Traité de Matériaux, 16, 155.Google Scholar
Hutson, N.D., Hoekstra, M.J. & Yang, R.T. (1999) Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity. Microporous and Mesoporous Materials, 28, 447–459.Google Scholar
Ksontini, N., Najjar, W. & Ghorbel, A. (2008) Al–Fe pillared clays: Synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids, 69, 1112–1115.Google Scholar
Lin, Q., Hao, J., Li, J., Ma, Z. & Lin, W. (2007) Copperimpregnated Al–Ce-pillared clay for selective catalytic reduction of NO by C3H6 . Catalysis Today, 126, 351–358.Google Scholar
Luo, M.Z., Liu, M.C., Mozdziesz, D. E., Lin, T. S., Dutschman, G.E., Gullen, E. A., Cheng, Y.C. & Sartorelli, A.C. (2000) Synthesis and biological evaluation of L- and D-configuration 1,3-dioxolane 5-azacytosine and 6-azathymine nucleosides. Bioorganic and Medicinal Chemistry Letters, 10, 2145–2148.Google Scholar
Maes, N., Heylen, I., Cool, P. & Vansant, E.F. (1997) The relation between the synthesis of pillared clays and their resulting porosity. Applied Clay Science, 12, 43–60.Google Scholar
Merat, L.M.O.C., San-Gil, R.A.S., Guerra, S.R. , Dieguez, L.C., Caldarelli, S., Eon, J.G., Ziarelli, F. & Pizzala, H. (2007) A spectroscopic probe for combined acid and redox properties in acid catalysts. Journal of Molecular Catalysis A: Chemical, 272, 298–305.Google Scholar
Mishra, B.G. & Rao, G.R. (2004) Physicochemical and catalytic properties of Zr-pillared montmorillonite with varying pillar density. Microporous and Mesoporous Materials, 70, 43–50.Google Scholar
Molina, C.B., Casas, J.A., Zazo, J.A. & Rodriguez, J.J. (2006) A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chemical Engineering Journal, 118, 29–35.Google Scholar
Mrad, I., Ghorbel, A., Tichit, D. & Lambert, J.F. (1997) Optimization of the preparation of an Al-pillared clay: thermal stability and surface acidity. Applied Clay Science, 12, 349–364.Google Scholar
Ogata, Y. & Kawasaki, A. (1970) Equilibrium additions to carbonyl compounds. Pp. 1–20 in: The Chemistry of the Carbonyl Group, 2 (Zabicky, J., editor). Wiley, New York.Google Scholar
Rao, G.R. & Mishra, B.G., (2005) A comparative UV–vis-diffuse reflectance study on the location and interaction of cerium ions in Al- and Zr-pillared montmorillonite clays. Materials Chemistry and Physics, 89, 110–115.CrossRefGoogle Scholar
Reddy, C.R., Bhat, Y.S., Nagendrappa, G & Jai-Prakash, B.S. (2009) Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catalysis Today, 141, 157–160.Google Scholar
Ruiz, J.A.C., Melo, D.M.A., Souza, R. & Alcazar, L.O. (2002) Determination of total acid in palygorskite chemically modified by n-butylamine thermodésorption. Materials Research, 5, 173–178.Google Scholar
Singh, V., Sapehiyia, V., Srivastava, V. & Kaur, S. (2006) ZrO2-pillared clay: an efficient catalyst for solventless synthesis of biologically active multifunctional dihydropyrimidinones. Catalysis Communications, 7, 571–578.Google Scholar
Singhal, A., Toth, L.M., Lin, J.S. & Affholter, K. (1996) Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. Journal of the American Chemical Society, 118, 11529–11534.Google Scholar
Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press.Google Scholar
Sun-Kou, M.R., Mendioroz, S. & Guijarro, M.I. (1998) A thermal study of Zr-pillared montmorillonite. Thermochimica Acta, 323, 145–157.Google Scholar
Sun-Kou, M.R., Mendioroz, S., Salerno, P. & Munoz, V. (2003) Catalytic activity of pillared clays in methanol conversion. Applied Catalysis A: General, 240, 273–285.CrossRefGoogle Scholar
Toranzo, R., Vicente, M.A., Banares-Munoz, M.A., Gandia, L.M. & Gil, A. (1998) Pillaring of saponite with zirconium oligomers. Microporous and Mesoporous Materials, 173, 173–188.Google Scholar
Vicente, M.A., Banares-Munoz, M.A., Gandia, L.M. & Gil, A. (2001) On the structural changes of a saponite intercalated with various polycations upon thermal treatments. Applied Catalysis A: General, 217, 191–204.Google Scholar
Yamanaka, S. & Brindley, G.W. (1979) High area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays and Clay Minerals, 27, 119–124.Google Scholar
Yang, R.T., Tharappiwattananon, N. & Long, R.Q. (1998) Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen. Applied Catalysis B: Environmental, 19, 289304.Google Scholar
Yang, S.J., Du, X., He, L. & Sun, J.T. (2005) Synthesis of acetals and ketals catalyzed by tungstosilicic acid supported on active carbon. Journal of Zhejiang University Science, 5, 373–377.Google Scholar
Zakarina, N.A., Volkova, I.D., Shchukina, O.V. & Khan, C.G. (2005) Pillared Targan montmorillonite in cracking of isopropanol. Russian Journal of Applied Chemistry, 78, 273–277.Google Scholar