Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-16T00:59:42.210Z Has data issue: false hasContentIssue false

Kinetic approach to the mineral reaction processes during hydrothermal treatment of a saponitic clay

Published online by Cambridge University Press:  09 July 2018

J. Cuevas
Affiliation:
Dpto. de Químiea Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid. Cantoblanco S/N., 28049 Madrid, Spain
A. Garralon
Affiliation:
Dpto. de Químiea Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid. Cantoblanco S/N., 28049 Madrid, Spain
S. Ramirez
Affiliation:
Dpto. de Químiea Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid. Cantoblanco S/N., 28049 Madrid, Spain
S. Leguey
Affiliation:
Dpto. de Químiea Agrícola, Geología y Geoquímica, Universidad Autónoma de Madrid. Cantoblanco S/N., 28049 Madrid, Spain

Abstract

In the course of hydrothermal experiments with a saponitic clay, evidence for the dissolution of the accessory sepiolite and the formation of smectite has been detected above 120°C Hydrothermal reactions with a clay to water ratio of 1:3 were performed at temperatures of 60, 90, 120, 175 and 200°C with time intervals of one month to one year.

The BET surface area and cation exchange capacity (CEC) are correlated with the sepiolite and the smectite content determined from XRD data. These relations have been used to recalculate the time dependence of the mineral contents in the time/temperature conditions of the experiments. The Ea values obtained for sepiolite dissolution (7-18 kcal/mol) or smectite formation (4.8-5 kcal/mol) indicate that sepiolite dissolution controls the rate of the process. Both results fit an apparent firstorder reaction and the system seems to evolve to a stable mineral composition in a short time period, ranging from one to 10 years as temperature decreases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Latif, N. & Weaver, C.E. (1969) Kinetics of acid dissolution of palygorskite (attapulgite) and sepiolite. Clays Clay Miner. 17, 165178.Google Scholar
Corma, A., Mifsud, A. & Pérez, J. (1986) Etude cinetique de l'attaque acide de la sepiolite: Modifications des proprietes texturales. Clay Miner. 21, 69–84.Google Scholar
Comejo, J. & Hermosin, M.C. (1991) Estudio comparativo de diversos mecanismos de disolución áicida de sepiolita. Bol. Soc. Esp. Miner. 14, 65–70.Google Scholar
Cuevas, J., Medina, J.A. & Legmey, S. (1992) Saponitic clays from the Madrid Basin: Accessory minerals influence in hydrothermal reactivity. Appl. Clay Sci. 7, 185189.Google Scholar
Cuevas, J., Pelayo, M., Rivas, P. & Leguey, S. (1993) Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential in backfilling and as sealing material in high level radioactive waste disposal. Appl. Clay Sci. 7, 383406.Google Scholar
Eberl, D. & Środoń J. (1988) Ostwald ripening and interparticle diffraction effects for illite crystals. Am. Miner. 73, 13351345.Google Scholar
Howard, J.J. & Roy, D.M. (1985) Development of layer charge and kinetics of experimental smectite alteration. Clays Clay Miner. 33, 8188.Google Scholar
Jones, B.F. & Galán, E. (1988). Sepiolite and palygorskite. Pp. 631-673 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Komarnemi, S. (1989) Mechanism of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy. Clays Clay Miner. 37, 469473.Google Scholar
Lasaga, A.C. (1996) Fundamental approaches in describing mineral dissolution and precipitation rates. Pp. 23–81 in: Chemical Weathering Rates of Silicate Minerals (White, A.F. & Brantley, S.L., editors). Reviews in Mineralogy, 31. Mineralogical Society of America, Washington, D.C.Google Scholar
Pusch, R. (1994) Waste Disposal in Rock. Elsevier Science Pub., Amsterdam.Google Scholar
Ramírez, S., Garralón, A., Cuevas, J., Martín Rubí, J.A., Casas, J., Alvarez, A. & Leguey, S. (1995) Características químicas y propiedades de superficie en secuencias-tipo de materiales esmectíticos en el yacimiento de sepiolita de Vicálvaro (Madrid). BoL Soc. Esp. Miner. 18-2, 4748.Google Scholar
Rhoades, J.D. (1982) Cation Exchange Capacity. Pp. 149-157 in: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (2nd edition) (Page, A.L., Miller, R.H. & Keeney, D.R., editors). ASA-SSSA 9. Madison. Wisconsin, USA.Google Scholar
Roberson, H.E. & Lahann, R.W. (1981) Smectite to illite conversion rates: Effects of solution chemistry. Clays Clay Miner. 29, 129135.Google Scholar
Whitney, G. (1983) The hydrothermal reactivity of saponite. Clays Clay Miner. 31, 1–8.CrossRefGoogle Scholar
Whitney, G. (1991) How smectite reacts at elevated temperatures? Clays and Hydrosilicate gels in Nuclear Fields Symp. EMRS 1991 Fall Meeting, Strasbourg. Google Scholar
Wolery, T.J. & Daveler, S.A. (1992). EQ6, a computer program .['or reaction path modelling of aqueous geochemical systems: Theoretical manual, User's guide and related documentation (v. 7.0). Lawrence Livermore National Laboratory. University of California. Livermore, California, USA, 337 pp.Google Scholar