Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T01:41:49.228Z Has data issue: false hasContentIssue false

Mechanisms of oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media: role of the pyroaurite-type Ni-Fe hydroxychlorides

Published online by Cambridge University Press:  09 July 2018

Ph. Refait
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 9992 CNRS-Université Henri Poincaré, Equipe sur la Réactivité des Espèces du Fer, and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy, France
J.-M. R. Genin
Affiliation:
Laboratoire de Chimie Physique pour l'Environnement, UMR 9992 CNRS-Université Henri Poincaré, Equipe sur la Réactivité des Espèces du Fer, and Département de Science des Matériaux, ESSTIN, 405, rue de Vandoeuvre, F 54600 Villers-les-Nancy, France

Abstract

Ni-Fe pyroaurite-type hydroxychlorides were prepared by aerial oxidation of Ni(II)-Fe(II) hydroxides precipitated in aqueous solution with various P = Fe/Ni ratios. When P≥ 1/3, Ni(II)-Fe(II)-Fe(III) hydroxychlorides characterized by a specific Fe(IIl)/[Fe(II)+Ni(II)] ratio of 1/3, corresponding to the idealized formula of NiII3-xFeIIxFeIII(OH)8Cl.nH2O (with 0 ≤ x ≤ 3), were obtained at the end of the first stage of oxidation, In a second reaction stage, these hydroxychlorides oxidize with deprotonation of hydroxyl ions into O2- ions, i.e. the remaining FeII(OH)2 groups are transformed into FeIIIOOH groups. Along with the Ni(II)-Fe(III) hydroxychloride which contains a part of the FeIIIOOH groups a second phase is obtained. It is an amorphous Fe(III) or Ni(II)-Fe(III) oxyhydroxide when 1/3<P≤3/2, and a ferric oxyhydroxide identified as γ-FeOOH (lepidocrocite) when P>3/2. On the other side of the domain, when P<1/3, the Fe(III)/[Fe(II)+Ni(II)] ratio cannot reach the specific value of 1/3; this gives rise to a pyroaurite-type Ni(II)-Fe(III) hydroxychloride with a lower chloride content, that is with an average composition of NiII3+yFeIII1-y(OH)8Cl1-y.nH2O where y = {[4/(1+P)] - 3}, down to minimum Fe(III) and Cl contents corresponding to y = 1/3 (P = 1/5). The in situ mechanisms of oxidation of Ni(II)-Fe(II) hydroxides into Ni(H)-Fe(II)-Fe(III) hydroxychlorides are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmarm, R. (1968) The crystal structure of pyroaurite. Acta Cryst. B24, 972-977.Google Scholar
Allmann, R. & Donnay, J.D.H. (1969) About the structure of iowaite. Am. Miner. 54, 296299.Google Scholar
Au-Yeung, S.C.F., Dénès, G., Greedan, J., Eaton, D. & Birchall, T. (1984) A novel synthetic route to “iron trihydroxide, Fe(OH)3“: characterisation and magnetic properties. Inorg. Chem. 23, 1513–1517.Google Scholar
Bernal, J.D., Dasgupta, D.R. & Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Miner. Bull, 4, 15–30.Google Scholar
Boucherit, N., Hugot-Le Goff, A. & Joiret, S. (1991) Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions. Corros. Sci. 32, 497507.CrossRefGoogle Scholar
Brion, D. (1980) Etude par spectroscopie de photé1ectrons de la dégradation superficielle de FeS2, CuFeS2, ZnS et PbS à l'air et dans l'eau. Appl. Surf Sci. 5, 133152.CrossRefGoogle Scholar
Cuttler, A.H., Man, V., Cranshaw, T.E. & Longworth, G. (1990) A Mössbauer study of green rust precipitates: I. Preparations from sulphate solutions. Clay Miner. 25, 289301.Google Scholar
Drissi, S.H., Refait Ph., Abdelmoula, M. & Génin, J.-M.R. (1995) Preparation and thermodynamic properties of Fe(II)-Fe(IIl) hydroxide-carbonate (green rust one), Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 20252041.CrossRefGoogle Scholar
Feitknecht, W. & Keller, G. (1950) Über die Dunkelgrünen Hydroxyverbindungen des Eisens. Z. anorg. Chem. 262, 6168.CrossRefGoogle Scholar
Génin, J.-M.R., Olowe, A.A., Refait Ph. & Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2; an electrochemical and MSssbauer spectroscopy study. Corros. Sci. 38, 17511762.Google Scholar
Génin, J.-M.R., Rézel, D., Bauer Ph., Olowe, A. & Béral, A. (1986) Mössbauer spectroscopy characterisation and electrochemical study of the kinetics of oxidation of iron in chlorinated aqueous media: structure and equilibrium diagram of green rust one. Electrochem. Methods Corr. Res., Mat. Sci. Forum, 8, 477490.CrossRefGoogle Scholar
Hansen, H.C.B. (1989) Composition, stabilization, and light absorption of Fe(lI)-Fe(III) hydroxycarbonate (green rust). Clay Miner. 24, 663669.Google Scholar
Hansen, H.C.B., Borggaard, O.K. & Sorensen, J. (1994) Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochim. Cosmochim. Acta, 58, 25992608.CrossRefGoogle Scholar
Ingram, L. & Taylor H,F.W. (1967) The crystal structures of sjögrenite and pyroaurite. Mineral. Mag. 36, 465479.Google Scholar
Johnson, C.E. (1969) Antiferromagnetism of γ-FeOOH: a Mössbauer effect study. J. Phys. C (Solid St. Phys.), 2, 1996-2002.Google Scholar
Johnston, C. (1990) In situ laser Raman microprobe of corroding iron electrode surfaces. Vib. Spectr. 1, 8796.CrossRefGoogle Scholar
Johnston, C. & Graves, P.R. (1990) In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system. AppL Spectr. 44, 105115.CrossRefGoogle Scholar
Kim, K.S. & Winograd, N. (1974) X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf. Sci. 43, 625643.Google Scholar
Kishi, K. & Ikeda, S. (1974) X-ray photoelectron spectroscopic study of the reaction of evaporated metal films with chlorine gas. J. Phys. Chem. 78, 107112.CrossRefGoogle Scholar
Kohls, D.W. & Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide ferric oxychloride from the Precambrian of Iowa. Am. Miner 52, 12611271.Google Scholar
Konno, H. & Nagayama, M. (1979) X-ray photoelectron spectra of hexavalent iron. J. Electr. Spectros. Relat. Phen. 18, 341343.Google Scholar
Kraan, A.M. van der (1973) Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Stat. Sol. A18, 215226.Google Scholar
Lorenz, P., Finster, J., Wendt, G., Salyn, J.V., Zumadilov, E.K. & Nefedov, V.I. (1979) ESCA investigations of some NiO/SiO2 and NiO-Al2O3/SiO2 catalysts. J. Electr. Spectros. Relat. Phen. 16, 267276.CrossRefGoogle Scholar
Lutz, H.D., Möller, H. & Schmidt, M. (1994) Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) - IR and Raman spectra, neutron diffraction of Fe(OH)2. J. MoL Struc. 328, 121132.Google Scholar
Maclntyre, N. S. & Zetaruk, D. G. (1977) X-ray photoeIectron spectroscopic studies of iron oxides. Anal Chem. 49, 15211529.Google Scholar
Madsen, M.B., Morup, S., Koch, C.J.W. & Borgaard, O.K. (1985) A study of microcrystals of synthetic feroxyhite (δ'-FeOOH). Surf. Sci. 156, 328334.Google Scholar
Mendiboure, A. & Schöllhorn, R. (1986) Formation and anion exchange reactions of layered transition metal hydroxides [Ni1-xMx](OH)2(CO3)x/2(H2O)z (M=Fe,Co). Rev. Chim. Min. 23, 819827.Google Scholar
Miyata, S. (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31, 305311.CrossRefGoogle Scholar
Miyata, S., Kumara, T., Hattori, H. & Tanabe, K. (1971) Physicochemical properties and structure of magnesia alumina. Nip. Kag. Zas. 92, 514519.Google Scholar
Murad, E. & Schwertmarm, U. (1980) The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Am. Miner. 65, 1044–1049.Google Scholar
Murad, E. & Taylor, R.M. (1984) The Mössbauer spectra of hydroxycarbonate green rusts. Clay Miner. 19, 7783.Google Scholar
Olowe, A.A., Refait, Ph. & Génin, J.-M.R. (1990) Superparamagnetic behaviour of goethite prepared in sulphated medium. Hyp. lnt. 57, 20372044.Google Scholar
Refait, Ph. & Génin, J.-M.R. (1993a) The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros. Sci. 34, 797819.Google Scholar
Refait, Ph. & Génin, J.-M.R. (1993b) The oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media. Corros. Sci. 34, 20592070.Google Scholar
Rézel, D., Bauer Ph. & Génin, J.-M.R. (1988) Superparamagnetic behaviour and hyperfine interactions in ferrous hydroxide 2 and green rust 1. Hyp. Int. 42, 10751078.CrossRefGoogle Scholar
Rossiter, M.J. & Hodgson, A. E. M. (1965) A Mössbauer study of ferric oxyhydroxide. J. Inorg. NucL Chem. 27, 6371.CrossRefGoogle Scholar
Salvati, L., Makovsky, L.E., Stencel, J.M., Brown, F.R. & Hercules, D.M. (1981) Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J. Phys. Chem. 85, 37003707.CrossRefGoogle Scholar
Schöllhorn, R. & Otto, B. (1987) Layer charge transition [Z]- → [Z]+ of lamellar metal oxides. J. Chem. Soc., Chem. Commun. 1559-1560.Google Scholar
Shalvoy, R.B., Reucroft, P.J. & Davis, B.H. (1979) Characterisation of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J. Catal. 56, 336348.CrossRefGoogle Scholar
Townshend, H.E., Simpson, T.C. & Johnson, G.L. (1994) Structure of rust on weathering steel in rural and industrial environments. Corrosion NACE, 50, 546554.CrossRefGoogle Scholar
Trolard, F., Abdelmoula, M., Bourrié, G., Humbert, B. & Génin, J.-M.R. (1996) Evidence of the occurrence of a “Green Rust” component in hydromorphic soils - Proposition of the existence of a new mineral: “fougerite”. Compt. Rend. Acad. Sci. 323 Série IIA, 1015-1022.Google Scholar
Trolard, F., Génin, J.-M. R., Abdelmoula, M., Bourrié, G., Humbert, B. & Herbillon, A. (1997) Identification of a green rust mineral in a reductomorphic soil by M/∼ssbauer and Raman spectroscopies. Geochim. Cosmochim. Acta, 61, 11071111.Google Scholar
Wren, A.G., Phillips, R.W. & Tolentino, C.U. (1979) Surface reactions of chlorine molecules and atoms with water and sulphuric acid at low temperatures. J. Coll. Interf. Sci. 70, 544557.CrossRefGoogle Scholar