Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:07:10.472Z Has data issue: false hasContentIssue false

Probing the nanoscale architecture of clay minerals

Published online by Cambridge University Press:  09 July 2018

C. T. Johnston*
Affiliation:
Crop, Soil and Environmental Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years, experimental and theoretical methods have provided new insights into the size, shape, reactivity, and stability of clay minerals. Although diverse and complex, the surface chemistry of all clay minerals is defined spatially on a common scale of nanometres. This review is organized around the nanoscale architecture of clay minerals examined at several different length scales. The first, and perhaps most important, is the length scale associated with Hbonding in clay minerals. Hbonding interactions define the size and shape of 1:1 phyllosilicates and dominate the surface chemistry of many clay minerals. Structural and surface OHgroups contained within and on the surface of clay minerals provide a type of ‘molecular reporter group’ and are sensitive to subtle changes in their local environment. Examples of OH-reporter group studies in clay minerals, and the spatial scales at which they provide diagnostic information, are examined. The second length scale considered here is that associated with clay–water and clay–organic interactions. Inorganic and organic solutes can be used to explore the surface chemistry of clay minerals. Similar to the use of reporter groups, molecular probes have diagnostic properties that are sensitive to changes in their molecular environment. Clay–water interactions occur at a length scale that extends from the size of the H2O molecule (~0.3 nm) to the larger scales associated with clay-swelling (>10 nm). Similarly, clay–organic interactions are also defined, in part, on the basis of their molecular size, in addition to the type of chemical bonding interactions that take place between the organic solute and the clay surface. Examples illustrating the use of clay–water and clay–organic solute interactions as molecular probes are presented. The largest scale to be considered is that of the particles themselves, with scales that approach micrometres. Recent developments in the synthesis and characterization of ultrathin hybrid films of clay minerals provide complementary information about the nature and distribution of active sites on clay minerals, as well as providing new opportunities to exploit the surface chemistry of clay minerals in the design of functional materials.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2010 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

References

Ahn, D.J. & Franses, E.I. (1992) Orientations of chain axes and transition moments in Langmuir-Blodgett monolayers deterimined by polarized FTIR-ATR spectroscopy. Journal of Physical Chemistry, 96, 99529959.CrossRefGoogle Scholar
Albert, J.T. & Harter, R.D. (1973) Adsorption of lysozyme and ovalbumin by clay — effect of clay suspension pH and clay mineral type. Soil Science, 115, 130136.CrossRefGoogle Scholar
Altaner, S.P., Weiss, C.A. & Kirkpatrick, R.J. (1988) Evidence from 29Si NMR for the structure of mixedlayer illite/smectite clay minerals. Nature, 331, 699702.CrossRefGoogle Scholar
Bailey, S.W. (1988) Polytypism of 1-1 layer silicates. Pp. 927 in. Reviews in Mineralogy, 19 (Bailey, S.W., editor). Mineralogical Society of America, Washington DC, USA.Google Scholar
Balan, E., Saitta, A.M. Mauri, F. & Calas, G. (2001) First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 13211330.Google Scholar
Balan, E., Lazzeri, M., Saitta, A.M., Allard, T., Fuchs, Y. & Mauri, F. (2005) First-principles study of OHstretching modes in kaolinite, dickite, and nacrite. American Mineralogist, 90, 5060.CrossRefGoogle Scholar
Balan, E., Lazzeri, M., Morin, G. & Mauri, F. (2006) Firstprinciples study of the OH-stretching modes of gibbsite. American Mineralogist, 91, 115119.CrossRefGoogle Scholar
Balan, E., Lazzeri, M., Mauri, F. & Calas, G. (2007) Structure, reactivity and spectroscopic properties of minerals from lateritic soils: insights from ah initio calculations. European Journal of Soil Science, 58, 870881.Google Scholar
Baron, M.H., Revault, M., Servagent-Noinville, S., Abadie, J. & Quiquampoix, H. (1999) Chymotrypsin adsorption on montmorillonite: Enzymatic activity and kinetic FTIR structural analysis. Journal of Colloid and Interface Science, 214, 319332.CrossRefGoogle ScholarPubMed
Barriuso, E., Laird, D.A., Koskinen, W.C. & Dowdy, R.H. (1994) Atrazine desorption from smectites. Soil Science Society of America Journal, 58, 16321638.CrossRefGoogle Scholar
Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.C. & Johansen, H. (1998) Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Minerals, 33, 297316.CrossRefGoogle Scholar
Belarbi, H., Haouzi, A., Douillard, J.M., Giuntini, J.C. & Henn, F. (2007) Hydration of a Na +-montmorillonite studied by thermally stimulated depolarization current. Journal of Colloid and Interface Science, 308, 216221.CrossRefGoogle Scholar
Bergaya, F. & Lagaly, G. (2006) General introduction: clays, clay minerals and clay science. Pp. 118 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738744.CrossRefGoogle Scholar
Bish, D.L. & Johnston, C.T. (1993) Rietveld refinement and Fourier transform infrared spectroscopic study of the dickite structure at low temperature. Clays and Clay Minerals, 41, 297304.CrossRefGoogle Scholar
Bookin, A.S., Drits, V.A. Plançon, A. & Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297307.CrossRefGoogle Scholar
Bordallo, H.N., Aldridge, L.P., Churchman, G.J., Gates, W.P., Telling, M.T.F., Kiefer, K., Fouquet, P., Seydel, T. & Kimber, S.A.J. (2008) Quasi-elastic neutron scattering studies on clay interlayer-space highlighting the effect of the cation in confined water dynamics. Journal of Physical Chemistry C, 112, 1398213991.CrossRefGoogle Scholar
Bowers, G.M., Bish, D.L. & Kirkpatrick, R.J. (2008) H2O and cation structure and dynamics in expandable clays: H-2 and K-39 NMR investigations of hectorite. Journal of Physical Chemistry C, 112, 64306438.CrossRefGoogle Scholar
Boyd, S.A. & Mortland, M.M. (1985) Urease activity on a clay-organic complex. Soil Science Society of America Journal, 49, 619622.CrossRefGoogle Scholar
Boyd, S.A., Sheng, G., Teppen, B.J. & Johnston, C.T. (2001) Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environmental Science & Technology, 35, 42274234.CrossRefGoogle ScholarPubMed
Brandt, K.B., Elbokl, T.A. & Detellier, C. (2003) Intercalation and interlamellar grafting of polyols in layered aluminosilicates. D-Sorbitol and adonitol derivatives of kaolinite. Journal of Materials Chemistry, 13, 25662572.CrossRefGoogle Scholar
Brindley, G.W. & Ertem, G. (1971) Prepartion and solvation properties of some variable charge montmorillonites. Clays and Clay Minerals, 19, 399404.Google Scholar
Brindley, G.W. & Robinson, K. (1946) The structure of kaolinite. Mineralogical Magazine, 27, 242253.CrossRefGoogle Scholar
Bromley, K.M., Patil, A.J., Seddon, A.M., Booth, P. & Mann, S. (2007) Bio-functional mesolamellar nanocomposites based on inorganic/polymer intercalation in purple membrane (bacteriorhodopsin) films. Advanced Materials, 19, 24332438.CrossRefGoogle Scholar
Brown, G.E., Henrich, V.E., Casey, W.H., Clark, D.L., Eggleston, C., Felmy, A., Goodman, D.W., Gratzel, M., Maciel, G., McCarthy, M.I., Nealson, K.H., Sverjensky, D.A., Toney, M.F. & Zachara, J.M. (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chemical Reviews, 99, 77174.CrossRefGoogle ScholarPubMed
Brown, G.E., Catalano, J.G., Templeton, A.S., Trainor, T.P., Farges, F., Bostick, B.C., Kendelewicz, T., Doyle, C.S., Spormann, A.M., Revill, K., Morin, G., Juillot, F. & Calas, G. (2005) Environmental interfaces, heavy metals, microbes, and plants: Applications of XAFS spectroscopy and related synchrotron radiation methods to environmental science. Physica Scripta, T115, 8087.CrossRefGoogle Scholar
Buswell, A.M., Krebs, K. & Rodebush, W.H. (1937) Infrared studies. III. Absorption bands of hydrogels between 2.5 and 3.5 micrometers. Journal of the American Chemical Society, 59, 26032605.CrossRefGoogle Scholar
Butler, I.S. & Frost, R.L. (2006) An overview of the highpressure vibrational spectra of clays and related minerals. Applied Spectroscopy Reviews, 41, 449471.CrossRefGoogle Scholar
Carey, D.M. & Korenowski, G.M. (1998) Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics, 108, 26692675.CrossRefGoogle Scholar
Cebula, D.J., Thomas, R.K. & White, J.W. (1981) Diffusion of water in Li-montmorillonite studied by quasielastic neutron scattering. Clays and Clay Minerals, 29, 241248.CrossRefGoogle Scholar
Chang, F.R.C., Skipper, N.T. & Sposito, G. (1997) Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates. Langmuir, 13, 20742082.CrossRefGoogle Scholar
Chappell, M.A., Laird, D.A., Thompson, M.X., Li, H., Teppen, B.J., Aggarwal, V., Johnston, C.T. & Boyd, S.A. (2005) Influence of smectite hydration and swelling on atrazine sorption behavior. Environmental Science & Technology, 39, 31503156.CrossRefGoogle ScholarPubMed
Chen, G.J., Yen, M.C., Wang, J.M., Lin, J.J. & Chiu, H.C. (2008) Layered inorganic/enzyme nanohybrids with selectivity and structural stability upon interacting with biomolecules. Bioconjugate Chemistry, 19, 138144.CrossRefGoogle ScholarPubMed
Clementz, D.M., Pinnavaia, T.J. & Mortland, M.M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. Journal of Physical Chemistry, 77, 196200.CrossRefGoogle Scholar
Clementz, D.M., Mortland, M.M. & Pinnavaia, T.J. (1974) Properties of reduced charge montmorillonites: Hydrated Cu(II) ions as a spectroscopic probe. Clays and Clay Minerals, 22, 4957.CrossRefGoogle Scholar
Costanzo, P.M. & Giese, R.F. (1985) Dehydration of synthetic hydrated kaolinites: a model for the dehyration of halloysite (10 A). Clays and Clay Minerals, 33, 415423.CrossRefGoogle Scholar
Costanzo, P.M. & Giese, R.F. (1990) Ordered and disordered organic intercalates of 8.4-A synthetically hydrated kaolinte. Clays and Clay Minerals, 38, 160170.CrossRefGoogle Scholar
Costanzo, P.M., Giese, R.F., Lipsicas, M. & Straley, C. (1982) Synthesis of a quasi-stable kaolinite and heatcapacity of interlayer water. Nature, 296, 549551.CrossRefGoogle Scholar
Cruz, M.D.R. & Franco, F. (2000) Thermal behavior of the kaolinite-hydrazine intercalation complex. Clays and Clay Minerals, 48, 6367.CrossRefGoogle Scholar
Darder, M., Aranda, P. & Ruiz-Hitzky, E. (2007) Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19, 13091319.CrossRefGoogle Scholar
Davis, J.A. & Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. Pp. 177260 in. Mineral-Water Interface Geochemistry. Reviews in Mineralogy, 23 (Hochella, M.F. & White, A.F.). Mineralogical Society of America, Washington D.C., USA. CrossRefGoogle Scholar
De Cristofaro, A. & Violante, A. (2001) Effect of hydroxy-aluminium species on the sorption and interlayering of albumin onto montmorillonite. Applied Clay Science, 19, 5967.CrossRefGoogle Scholar
de Donate, P., Cheilletz, A., Barres, O. & Yvon, J. (2004) Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald. Applied Spectroscopy, 58, 521527.CrossRefGoogle Scholar
De Oliveira, M.F., Johnston, C.T., Premachandra, G.S., Teppen, B.J., Li, H., Laird, D.A., Zhu, D.Q. & Boyd, S.A. (2005) Spectroscopic study of carbaryl sorption on smectite from aqueous suspension. Environmental Science & Technology, 39, 91239129.Google Scholar
Delville, A. (1992) Structure of liquids at a solid interface: an application to the swelling of clay by water. Langmuir, 8, 17961805.CrossRefGoogle Scholar
Denison, M.S. & Nagy, S.R. (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology, 43, 309334.CrossRefGoogle ScholarPubMed
Dera, P., Prewitt, C.T., Japel, S., Bish, D.L. & Johnston, C.T. (2003) Pressure-controlled polytypism in hydrous layered materials. American Mineralogist, 88, 14281435.CrossRefGoogle Scholar
Downs, R.T. & Hall-Wallace, M. (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247250.Google Scholar
Du, Q., Freysz, E. & Shen, Y.R. (1994a) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science, 264, 826828.CrossRefGoogle Scholar
Du, Q., Freysz, E. & Shen, Y.R. (1994b) Vibrational spectra of water molecules at quartz-water interfaces. Physical Review Letters, 72, 238241.CrossRefGoogle Scholar
Dubois, P. (2007) Layered silicate polymer nanocomposites: melt-blending versus intercalative polymerization. Pp. 3360 in: Clay-based Polymer Nanocomposites (CPN) (Carrado, K.A. & Bergaya, F., editors). The Clay Minerals Society, Chantilly, VA, USA.CrossRefGoogle Scholar
Eisenthal, K.B. (1996) Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chemical Reviews, 96, 13431360.Google ScholarPubMed
Elbokl, T.A. & Detellier, C. (2008) Intercalation of cyclic imides in kaolinite. Journal of Colloid and Interface Science, 323, 338348.CrossRefGoogle ScholarPubMed
Ensminger, L.E. & Gieseking, J.E. (1939) The adsorption of proteins by montmorillonitic clays. Soil Science, 48, 467473.CrossRefGoogle Scholar
Ensminger, L.E. & Gieseking, J.E. (1941) The absorption of proteins by montmorillonitic clays and its effect on base-exchange capacity. Soil Science, 51, 125132.Google Scholar
Ensminger, L.E. & Gieseking, J.E. (1942) Resistance of clay-adsorbed proteins to proteolytic hydrolysis. Soil Science, 53, 205209.CrossRefGoogle Scholar
Falk, M. (1984) The frequency of the H-O-H bending fundamental in solids and liquids. Spectrochimica Ada Part A—Molecular and Biomolecular Spectroscopy, 40, 4348.Google Scholar
Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Minerals, 33, 601604.CrossRefGoogle Scholar
Farmer, V.C. (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Ada Part A—Molecular and Biomolecular Spectroscopy, 56, 927930.CrossRefGoogle ScholarPubMed
Farmer, V.C. & Mortland, M.M. (1966) Infrared study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite. Journal of the Chemical Society, 1966A, 344351.CrossRefGoogle Scholar
Feller, D., Glendening, E.D., Woon, D.E. & Feyereisen, M.W. (1995) An extended basis-set ab-initio study of alkali-metal cation-water clusters. Journal of Chemical Physics, 103, 35263542.CrossRefGoogle Scholar
Fernandez, M., Serratosa, J.M. & Johns, W.D. (1970) Perturbation of the stretching vibration of OH groups in phyullosillicates by the interlayer cations. Reunion Hispano-Belga de Minerales de la Ardlla, 163-167.Google Scholar
Ferrario, J. & Byrne, C. (2000) The concentration and distribution of 2,3,7,8-dibenzo-p-dioxins/-furans in chickens. Chemsophere, 40, 221224.Google Scholar
Frost, R.L. & Kloprogge, J.T. (2000) Raman spectroscopy of nacrite single crystals at 298 and 77K. Spectrochimica Ada Part A—Molecular and Biomolecular Spectroscopy, 56, 931939.CrossRefGoogle Scholar
Fukuda, J. & Shinoda, K. (2008) Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy. Physics and Chemistry of Minerals, 35, 347357.CrossRefGoogle Scholar
Gale, P.A. (2000) Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199, 181233.CrossRefGoogle Scholar
Garwood, G.A., Mortland, M.M. & Pinnavaia, T.J. (1983) Immobilization of glucose oxidase on montmorillonite clay: hydrophobic and ionic modes of binding. Journal of Molecular Catalysis, 22, 153163.CrossRefGoogle Scholar
Gianfreda, L., Rao, M.A., Sannino, F., Saccomandi, F. & Violante, A. (2002) Enzymes in soil: Properties, behavior and potential applications. Soil Mineral-Organic Matter-Microorganism Interactions and Ecosystem Health, 28B. Ecological Significance of the Interactions Among Clay Minerals, Organic Matter and Soil Biota, 301-327.CrossRefGoogle Scholar
Glendening, E.D. & Feller, D. (1995) Cation-water interactions: the M+(H 2O)n clusters for alkali metals, M = Li, Na, K, Rb, and Cs. Journal of Physical Chemistry, 99, 30603067.Google Scholar
Glendening, E.D. & Feller, D. (1996) Dication-water interactions: M(2+)(H2O)(n) clusters for alkaline earth metals, M=Mg,Ca,Sr,Ba, and Ra. Journal of Physical Chemistry, 100, 47904797.Google Scholar
Guven, N. (1988) Smectites. Pp. 497559 in: Hydrous phyllosilicates (exclusive of micas) (Bailey, S.W., editor). American Mineralogical Society, Washington DC, USA.CrossRefGoogle Scholar
Haack, E.A., Johnston, C.T. & Maurice, P.A. (2008) Mechanisms of siderophore sorption to smectite and siderophore-enhanced release of structural Fe +. Geochimica et Cosmochimica Acta, 72, 33813397.Google Scholar
Haderlein, S.B. & Schwarzenbach, R.P. (1993) Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environmental Science & Technology, 27, 316326.CrossRefGoogle Scholar
Haderlein, S.B., Weissmahr, K.W. & Schwarzenbach, R.P. (1996) Specific adsorption of nitroaromatic: Explosives and pesticides to clay minerals. Environmental Science & Technology, 30, 612622.Google Scholar
Harter, R.D. (1975) Effect of exchange cations and solution ionic-strength on formation and stability of smectite-protein complexes. Soil Science, 120, 174181.CrossRefGoogle Scholar
Harter, R.D. & Stotzky, G. (1971) Formation of clayprotein complexes. Soil Science Society of America Proceedings, 35, 383389.Google Scholar
Hayward, D.G. & Bolger, P.M. (2005) Tetrachlorodibenzo-p-dioxin in baby food made from chicken produced before and after the termination of ball clay use in chicken feed in the United States. Environmental Research, 99, 307313.CrossRefGoogle ScholarPubMed
Hayward, D.G., Nortrup, D., Gardner, A. & Clower, M. (1999) Elevated TCDD in chicken eggs and farmraised catfish fed a diet with ball clay from a southern United States mine. Environmental Research, 81, 248256.CrossRefGoogle ScholarPubMed
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mossbauer-spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223238.CrossRefGoogle Scholar
Hendricks, S.B. (1929) Diffraction of X-radiation from some crystalline aggregates. Zeitschrift für Kristallographie, 71, 273275.Google Scholar
Hochella, M.F. (2006) The case for nanogeoscience. Progress in Convergence: Technologies for Human Wellbeing, 1093, 108122.Google ScholarPubMed
Hochella, M.F. (2008) Nanogeoscience: from origins to cutting-edge applications. Elements, 4, 373379.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschf fihigkeit yon Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für Anorganische und Allgemeine Chemie, 262, 9599.CrossRefGoogle Scholar
Holtz, M., Solin, S.A. & Pinnavaia, T.J. (1993) Effect of pressure on the Raman vibrational modes of layered aluminosilicate compounds. Physical Review, 48, 312317.Google Scholar
Huang, E., Li, A. & Xu, J. (1996) High-pressure phase transition in A1(OH)3: Raman and X-ray observations. Geophysical Research Letters, 23, 30833086.CrossRefGoogle Scholar
Huang, E., Lin, J.F., Xu, J., Huang, T., Jean, Y.-C. & Sheu, H.-S. (1999) Compression studies of gibbsite and its high-pressure polymorph. Physics and Chemistry of Minerals, 26, 576583.CrossRefGoogle Scholar
Huang, Y.S., Jeng, U.S., Shiu, Y.J., Lai, Y.H. & Sun, Y.S. (2007) Charge interaction and temperature effects on the solution structure of lysozyme as revealed by small-angle X-ray scattering. Journal of Applied Crystallography, 40, S165-S169.CrossRefGoogle Scholar
Inukai, K., Hotta, Y., Taniguchi, M., Tomura, S. & Yamagishi, A. (1994) Formation of a clay monolayer at an air-water-interface. Journal of the Chemical Society—Chemical Communications, 959-959.Google Scholar
Jaynes, W.F., Traina, S.J., Bigham, J.M. & Johnston, C.T. (1992) Preparation and characterization of reducedcharge hectorites. Clays and Clay Minerals, 40, 397405.CrossRefGoogle Scholar
Jena, K.C. & Hore, D.K. (2009) Variation of ionic strength reveals the interfacial water structure at a charged mineral surface. Journal of Physical Chemistry C, 113, 1536415372.CrossRefGoogle Scholar
Johnston, C.T. (1996) Sorption of organic compounds on clay minerals: A surface functional group approach. Pp. 144 in: Organic Pollutants in the Environment (Sawhney, B., editor). Clay Minerals Society, Boulder, CO, USA.Google Scholar
Johnston, C.T. & Premachandra, G.S. (2001) Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir, 17, 37123718.CrossRefGoogle Scholar
Johnston, C.T. & Stone, D.A. (1990) Influence of hydrazine on the vibrational modes of kaolinite. Clays and Clay Minerals, 38, 121128.CrossRefGoogle Scholar
Johnston, C.T. & Tombacz, E. (2002) Surface chemistry of soil minerals. Pp. 3767 in: Soil Mineralogy with Environmental Applications (Dixon, J.B. & Schulze, D.G., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Johnston, C.T., Sposito, G., Bocian, D.F. & Birge, R.R. (1984) Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsuOlfoxide complex. Journal of Physical Chemistry, 88, 59595964.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G. & Birge, R.R. (1985) Raman spectroscopic study of kaolinite in aqueous suspension. Clays and Clay Minerals, 33, 483489.CrossRefGoogle Scholar
Johnston, C.T., Stone, D.A. & Applewhite, L.A. (1987) Vibrational spectroscopic study of the kaolinitehydrazine intercalation complex. Pp. 118127 in: The Third Conference on the Environmental Chemistry of Hydrazine Fuels,Panama City,FL 15-17 Sept. 1987. ESL-TR-87-74.Google Scholar
Johnston, C.T., Agnew, S.F. & Bish, D.L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, 38, 573583.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G. & Erickson, C. (1992) Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40, 722730.CrossRefGoogle Scholar
Johnston, C.T., Sposito, G. & Earl, W.L. (1993) Surface spectroscopy of environmental particles by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Pp. 136 in. Environmental Particles. Environmental Analytical and Physical Chemistry Series, 2 (Buffle, J. & Van Leeuwen, H.P., editors) Lewis Publ., Boca Raton.Google Scholar
Johnston, C.T., Helsen, J., Schoonheydt, R.A., Bish, D.L. & Agnew, S.F. (1998) Single crystal Raman spectroscopic study of dickite. American Mineralogist, 83, 7584.CrossRefGoogle Scholar
Johnston, C.T., Bish, D.L., Eckert, J. & Brown, L.A. (2000) Infrared and inelastic neutron scattering study of the 1.03-and 0.95-nm kaolinite-hydrazine intercalation complexes. Journal of Physical Chemistry B, 104, 80808088.CrossRefGoogle Scholar
Johnston, C.T., Oliveira, M.F.D., Sheng, G. & Boyd, S.A. (2001) Spectroscopic study of nitroaromatic-smectite sorption mechanisms. Environmental Science & Technology, 35, 47674772.CrossRefGoogle ScholarPubMed
Johnston, C.T., Sheng, G., Teppen, B.J., Boyd, S.A. & De Oliveira, M.F. (2002a) Spectroscopic study of dinitrophenol herbicide sorption on smectite. Environmental Science & Technology, 36, 50675074.Google Scholar
Johnston, C.T., Wang, S.L., Bish, D.L., Dera, P., Agnew, S.F. & Kenney, J.W. (2002b) Novel pressure-induced phase transformations in hydrous layered materials. Geophysical Research Letters, 29, art-1770.CrossRefGoogle Scholar
Johnston, C.T., Boyd, S.A., Teppen, B.J. & Sheng, G. (2004) Sorption of nitroaromatic compounds on clay surfaces. Pp. 155189 in: Handbook of Layered Materials (Auerbach, S.M., Carrado, K.A. & Dutta, P.K., editors). Marcell Dekker Inc., New York, USA.Google Scholar
Johnston, C.T., Elzea Kogel, J., Bish, D.L., Kogure, T. & Murray, H. (2008) Low-temperature FTIR study of kaolin-group minerals. Clays and Clay Minerals, 56, 470485.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals - a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kameda, J., Yamagishi, A. & Kogure, T. (2005) Morphological characteristics of ordered kaolinite: investigation using electron back-scattered diffraction. American Mineralogist, 90, 14621465.CrossRefGoogle Scholar
Kameda, J., Saruwatari, K., Beaufort, D. & Kogure, T. (2008) Textures and polytypes in vermiform kaolins diagenetically formed in a sandstone reservoir: a FIB-TEM investigation. European Journal of Mineralogy, 20, 199204.CrossRefGoogle Scholar
Kogure, T. & Inoue, A. (2005a) Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 90, 8589.CrossRefGoogle Scholar
Kogure, T. & Inoue, A. (2005b) Stacking defects and long-period polytypes in kaolin minerals from a hydrothermal deposit. European Journal of Mineralogy, 17, 465473.CrossRefGoogle Scholar
Kogure, T., Hybler, J. & Durovic, S. (2001) A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates. Clays and Clay Minerals, 49, 310317.Google Scholar
Kogure, T., Elzea-Kogel, J., Johnston, C.T. & Bish, D.L. (2010) Stacking disorder in a sedimentary kaolinite. Clays and Clay Minerals, 58, 6271.CrossRefGoogle Scholar
Kotov, N.A., Meldrum, F.C., Fendler, J.H., Tombacz, E. & Dekany, I. (1994) Spreading of clay organo-complexes on aqueous solutions: construction of Langmuir-Blodgett clay organocomplex multilayer films. Langmuir, 10, 37973804.CrossRefGoogle Scholar
Kuroda, K., Hiraguri, K., Komori, Y., Sugahara, Y., Mouri, H. & Uesu, Y. (1999) An acentric arrangement of pnitroaniline molecules between the layers of kaolinite. Chemical Communications, 2253-2254.Google Scholar
Lagaly, G. (2006) Colloid clay science. Pp. 141245 in: Developments in Clay Science, Handbook of Clay Science (Bergaya, F. & Theng, B.K.G., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Lagaly, G. & Malberg, R. (1990) Disaggregation of alkylammonium montmorillonites in organic-solvents. Colloids and Surfaces, 49, 1127.CrossRefGoogle Scholar
Lagaly, G., Ogawa, M. & Dekany, I. (2006) Clay mineral organic interactions. Pp. 309377 in: Developments in Clay Science, Handbook of Clay Science. (Bergaya, F. & Theng, B.K.G., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Laird, D.A. (2006) Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 7487.CrossRefGoogle Scholar
Laird, D.A., Barriuso, E., Dowdy, R.H. & Koskinen, W.C. (1992) Adsorption of atrazine on smectites. Soil Science Society of America Journal, 56, 6267.CrossRefGoogle Scholar
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 1 —22.CrossRefGoogle Scholar
Ledoux, R.L. & White, J.L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 4749.Google Scholar
Ledoux, R.L. & White, J.L. (1966) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea. Journal of Colloid and Interface Science, 21, 127152.CrossRefGoogle Scholar
Letaief, S., Tonle, I.K., Diaco, T. & Detellier, C. (2008) Nanohybrid materials from interlayer functionalization of kaolinite. Application to the electrochemical preconcentration of cyanide. Applied Clay Science, 42, 95101.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Lipsicas, M., Raythatha, R., Giese, R.F. & Costanzo, P.M. (1986) Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates. Clays and Clay Minerals, 34, 635644.CrossRefGoogle Scholar
Liu, C., Li, H., Teppen, B.J., Johnston, C.T. & Boyd, S.A. (2009) Mechanisms associated with the high adsorption of dibenzo-p-dioxin from water by smectite clays. Environmental Science & Technology, 43, 27772783.CrossRefGoogle ScholarPubMed
Logsdon, S. & Laird, D. (2004) Cation and water content effects on dipole rotation activation energy of smectites. Soil Science Society of America Journal, 68, 15861591.CrossRefGoogle Scholar
McBride, M.B. (1994) Organic pollutants in soil. Pp. 342393 in: Environmental Chemistry of Soils. Oxford University Press, Oxford.Google Scholar
McBride, M.B. (1997) A critique of diffuse double layer models applied to colloid and surface chemistry. Clays and Clay Minerals, 45, 598608.Google Scholar
McBride, M.B. & Baveye, P. (2002) Diffuse double-layer models, long-range forces, and ordering in clay colloids. Soil Science Society of America Journal, 66, 12071217.CrossRefGoogle Scholar
McBride, M.B. & Mortland, M.M. (1974) Copper (II) interactions with montmorillonite: evidence from physical methods. Soil Science Society of America Proceedings, 38, 408415.CrossRefGoogle Scholar
McBride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1975a) Electron spin relaxation and the mobility of manganese(II) exchange ions in smectites. American Mineralogist, 60, 6672.Google Scholar
McBride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1975b) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces. Journal of Physical Chemistry, 79, 24302435.CrossRefGoogle Scholar
Mclaren, A.D. & Peterson, G.H. (1961) Montmorillonite as a caliper for the size of protein molecules. Nature 192, 960961.CrossRefGoogle Scholar
Mclaren, A.D., Peterson, G.H. & Barshad, I. (1958) The adsorption and reactions of enzymes and proteins on clay minerals: IV. Kaolinite and montmorillonite. Soil Science Society of America Proceedings, 22, 239244.CrossRefGoogle Scholar
Michaelian, K.H. (1986) The Raman spectrum of kaolinite #9 at 21°C. Canadian Journal of Chemistry, 64, 285289.CrossRefGoogle Scholar
Michot, L.J., Villieras, F., Francois, M., Bihannic, I., Pelletier, M. & Cases, J.M. (2002) Water organisation at the solid-aqueous solution interface. Comptes Rendus Geoscience, 334, 611631.CrossRefGoogle Scholar
Mortland, M.M. (1970) Clay-organic complexes and interactions. Advances in Agronomy, 22, 75117.Google Scholar
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu2+ smectite catalysis. Journal of Molecular Catalysis, 27, 143155.CrossRefGoogle Scholar
Mortland, M.M. & Lawless, J.G. (1983) Smectite interaction with riboflavin. Clays and Clay Minerals, 31, 435439.Google Scholar
Murray, H.H. (1954) Structural variations of some kaolinites in relation to dehydrated halloysite. American Mineralogist, 39, 97108.Google Scholar
Naidja, A., Violante, A. & Huang, P.M. (1995) Adsorption of tyrosinase onto montmorillonite as influenced by hydroxyaluminum coatings. Clays and Clay Minerals, 43, 647655.Google Scholar
Newman, A.C.D. (1987) The interaction of water with clay mineral surfaces. Pp. 237274 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Noinville, S., Revault, M., Quiquampoix, H. & Baron, M.H. (2004) Structural effects of drying and rehydration for enzymes in soils: a kinetics-FTIR analysis of alpha-chymotrypsin adsorbed on montmorillonite. Journal of Colloid and Interface Science, 273, 414425.CrossRefGoogle ScholarPubMed
Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 120-134.Google Scholar
Ockwig, N.W., Greathouse, J.A., Durkin, J.S., Cygan, R.T., Daemen, L.L. & Nenoff, T.M. (2009) Nanoconfined water in magnesium-rich 2:1 phyllosilicates. Journal of the American Chemical Society, 131, 81558162.CrossRefGoogle Scholar
Ogawa, M. & Kuroda, K. (1995) Photofunctions of intercalation compounds. Chemical Reviews, 95, 399438.Google Scholar
Olejnik, S., Aylmore, L.A.G., Posner, A.M. & Quirk, J.P. (1968) Infrared spectra of kaolin mineral dimethylsulfoxide complexes. Journal of Physical Chemistry, 72, 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A.M. & Quirk, J.P. (1971) Infrared spectrum of the kaolinite-pyridine-N-oxide complex. Spectrochimica Ada Part A—Molecular And Biomolecular Spectroscopy, 27A, 20052009.CrossRefGoogle Scholar
Parfitt, R.L., Russell, J.D. & Farmer, V.C. (1976) Confirmation of the surface structures of geothite (alpha-FeOOH) and phosphated goethite by infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions 1, 72, 10821087.CrossRefGoogle Scholar
Park, C., Fenter, P.A., Sturchio, N.C. & Nagy, K.L. (2008) Thermodynamics, interfacial structure, and pH hysteresis of Rb+ and Sr2+ adsorption at the muscovite (OOl)-solution interface. Langmuir, 24, 1399314004.CrossRefGoogle Scholar
Patil, A.J. & Mann, S. (2008) Self-assembly of bioinorganic nanohybrids using organoclay building blocks. Journal of Materials Chemistry, 18, 46054615.CrossRefGoogle Scholar
Pauling, L. (1930) The structure of chlorites. Proceedings of the National Academy of Sciences, 16, 578582.CrossRefGoogle ScholarPubMed
Pauling, L. (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd edition. Cornell University Press, Ithaca, New York, 644 pp.Google Scholar
Phambu, N., Humbert, B. & Burneau, A. (2000) Relation between the infrared spectra and the lateral specific surface areas of gibbsite samples. Langmuir, 16, 62006207.CrossRefGoogle Scholar
Pimentel, G.C. & McClellan, A.B. (1960) The Hydrogen Bond, 1st edition. W.H. Freeman and Co., San Fransisco, USA, 475 pp.Google Scholar
Pimentel, G.C. & McClellan, A.L. (1971) Hydrogen bonding. Annual Review of Physical Chemistry, 22, 347385.CrossRefGoogle Scholar
Plançon, A. (2001) Order-disorder in clay mineral structures. Clay Minerals, 36, 114.CrossRefGoogle Scholar
Plançon, A. & Tchoubar, C. (1977a) Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon. Clays and Clay Minerals, 25, 430435.CrossRefGoogle Scholar
Plançon, A. & Tchoubar, C. (1977b) Determination of structural defects in phyllo silicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, 25, 436450.Google Scholar
Plançon, A., Giese, R.F. & Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, 23, 249260.CrossRefGoogle Scholar
Poinsignon, C., Cases, J.M. & Fripiat, J.J. (1978) Electrical-polarization of water molecules adsorbed by smectites. An infrared study. Journal of Physical Chemistry, 82, 18551860.CrossRefGoogle Scholar
Prost, R. (1984) Low-temperature IR study of structrural OH groups of kaolinite, dickite and nacrite. Agronomie, 4, 403406.CrossRefGoogle Scholar
Prost, R., Dameme, A., Huard, E. & Driard, J. (1987) Lowtemperature (300-5K) IR study of structural OH groups of kaolinite, dickite, and nacrite. Pp. 1723 in: Proceedings of the International Clay Conference. Denver 1985 (Schultz, L.G., Van Olphen, H. & Mumpton, F.A., editors) Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Quiquampoix, H. & Burns, R.G. (2007) Interactions between proteins and soil mineral surfaces: Environmental and health consequences. Elements, 3,401-406.CrossRefGoogle Scholar
Quirk, I.P. (2003) Comments on Diffuse double-layer models, long-range forces, and ordering of clay colloids. Soil Science Society of America Journal, 67, 19601961.CrossRefGoogle Scholar
Rana, K., Boyd, S.A., Teppen, B.J., Li, H., Liu, C. & Johnston, C.T. (2009) Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite. Physical Chemistry, Chemical Physics, 11, 29762985.CrossRefGoogle ScholarPubMed
Rao, J.S., Dinadayalane, T.C., Leszczynski I & Sastry, G.N. (2008) Comprehensive study on the solvation of mono- and divalent metal cations: Li2+, Na2+, K2+ Be2+, Mg2+ and Ca2+ . Journal of Physical Chemistry A, 111, 12944-12953.Google Scholar
Ras, R.H.A., Johnston, C.T., Franses, E.I., Ramaekers, R., Maes, G., Foubert, P., De Schryver, F.C. & Schoonheydt, R.A. (2003) Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19, 42954302.CrossRefGoogle Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., Dekany, I. & Schoonheydt, R.A. (2004a) Infrared reflection absorption spectroscopy study of smectite clay monolayers. Thin Solid Films, 466, 291294.CrossRefGoogle Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., Dekany, I. & Schoonheydt, R.A. (2004b) Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals. Physical Chemistry, Chemical Physics, 6, 53475352.CrossRefGoogle Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., DiMasi, E., Dekany, I. & Schoonheydt, R.A. (2004c) Hybrid Langmuir-Blodgett monolayers containing clay minerals: effect of clay concentration and surface charge density on the film formation. Physical Chemistry, Chemical Physics, 6, 41744184.Google Scholar
Ras, R.H.A., Schoonheydt, R.A. & Johnston, C.T. (2007a) Relation between s-polarized and p-polarized internal reflection spectra: application for the spectral resolution of perpendicular vibrational modes. Journal of Physical Chemistry A, 111, 87878791.Google Scholar
Ras, R.H.A., Umemura, Y., Johnston, C.T., Yamagishi, A. & Schoonheydt, R.A. (2007b) Ultrathin hybrid films of clay minerals. Physical Chemistry, Chemical Physics, 9, 918932.CrossRefGoogle Scholar
Richter, D.D. (2007) Humanity's transformation of Earth's soil: pedology's new frontier. Soil Science, 172, 957967.CrossRefGoogle Scholar
Rinnert, E., Carteret, C., Humbert, B., Fragneto-Cusani, G., Ramsay, J.D.F. Delville, A., Robert, J.L., Bihannic, I., Pelletier, M. & Michot, L.J. (2005) Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study. Journal of Physical Chemistry B, 109, 2374523759.CrossRefGoogle ScholarPubMed
Rochester, C.H. & Topham, S.A. (1978) Infrared study of surface hydroxyl groups on goethite. Journal of the Chemical Society, Faraday Transactions 1, 75, 591602.CrossRefGoogle Scholar
Rotenberg, B., Morel, J.P., Marry, V., Turq, P. & Morel-Desrosiers, N. (2009) On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochimica et Cosmochimica Acta, 73, 40344044.CrossRefGoogle Scholar
Russell, J.D. & Farmer, V.C. (1964) Infra-red spectroscopic study of the dehydration of montmorillonite and saponite. Clay Minerals Bulletin, 5, 443464.CrossRefGoogle Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869879.CrossRefGoogle Scholar
Russell, J.D., Parfitt, R.L., Fraser, A.R. & Farmer, V.C. (1974) Surface structure of gibbsite,goethite and phosphated goethite. Nature, 248, 220221.CrossRefGoogle Scholar
Salles, F., Devautour-Vinot, S., Bildstein, O., Jullien, M., Maurin, G., Giuntini, J.C., Douillard, J.M. & Van Damme, H. (2008) Ionic mobility and hydration energies in montmorillonite clay. Journal of Physical Chemistry C., 111, 14001-14009.Google Scholar
Salles, F., Douillard, J.M., Denoyel, R., Bildstein, O., Jullien, M., Beurroies, I. & Van Damme, H. (2009) Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510522.Google Scholar
Schindler, P.W., Furst, B., Dick, R. & Wolf, P.U. (1976) Ligand properties of surface silanol groups. Journal of Colloid and Interface Science, 55, 469475.CrossRefGoogle Scholar
Schlegel, M.L., Nagy, K.L., Fenter, P., Cheng, L., Sturchio, N.C. & Jacobsen, S.D. (2006) Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. Geochimica et Cosmochimica Ada, 70, 35493565.CrossRefGoogle Scholar
Schoonheydt, R.A. & Johnston, C.T., (2007) Surface and interface chemistry of clay minerals. Pp. 87112 in: Handbook of Clay Science 1 (Bergaya, F. & Theng, B.K.G., editors) Elsevier Science Ltd, Amsterdam, The Netherlands.Google Scholar
Schramm, L.L. & Kwak, J.C.T. (1982) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension. Clays and Clay Minerals, 30, 4048.CrossRefGoogle Scholar
Servagent-Noinville, S., Revault, M., Quiquampoix, H. & Baron, M.H. (2000) Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. Journal of Colloid and Interface Science, 221, 273283.CrossRefGoogle ScholarPubMed
Sheng, G., Johnston, C.T., Teppen, B.J. & Boyd, S.A. (2002) Adsorption of dinitrophenol herbicides from water by montmorillonite. Clays and Clay Minerals, 50, 2534.CrossRefGoogle Scholar
Shinoda, K.A.N. (1998) Interlayer proton transfer in brucite under pressure by polarized IR spectroscopy to 5.3 GPa. Physics and Chemistry of Minerals, 25, 197202.CrossRefGoogle Scholar
Shoval, S., Yariv, S., Michaelian, K.H., Boudeulle, M. & Panczer, G. (1999a) Hydroxyl-stretching bands ‘A’ and ‘Z’ in Raman and infrared spectra of kaolinites. Clay Minerals, 34, 551563.Google Scholar
Shoval, S., Yariv, S., Michaelian, K.H., Lapides, I., Boudeuille, M. & Panczer, G. (1999b) A fifth OHstretching band in IR spectra of kaolinites. Journal of Colloid and Interface Science, 212, 523529.CrossRefGoogle Scholar
Shoval, S., Yariv, S., Michaelian, K.H., Boudeulle, M. & Panczer, G. (2002) Hydroxyl-stretching bands in polarized micro-Raman spectra of oriented singlecrystal Keokuk kaolinite. Clays and Clay Minerals, 50, 5662.CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603619.CrossRefGoogle Scholar
Sivozhelezov, V., Pechkova, E. & Nicolini, C. (2006) Mapping electrostatic potential of a protein on its hydrophobic surface: implications for crystallization of cytochrome P450scc. Journal of Theoretical Biology, 241, 7380.CrossRefGoogle ScholarPubMed
Spassov, V.Z. & Yan, L. (2008) A fast and accurate computational approach to protein ionization. Protein Science, 17, 19551970.CrossRefGoogle ScholarPubMed
Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press, New York, USA, 234 pp.Google Scholar
Sposito, G. & Prost, R. (1982) Structure of water adsorbed on smectites. Chemical Reviews, 82, 553573.CrossRefGoogle Scholar
Sposito, G., Prost, R. & Gaultier, J.P. (1983) Infrared spectroscopic study of adsorbed water on reducedcharge Na/Li montrmorillonites. Clays and Clay Minerals, 31, 916.CrossRefGoogle Scholar
Srodon, J. & McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2Oretention measurements. Clays and Clay Minerals, 56, 155174.CrossRefGoogle Scholar
Stumm, W. (1992) Chemistry of the Solid-Water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, 1st edn. John Wiley & Sons Inc., New York, USA, 428 pp.Google Scholar
Sun, X.H. & Doner, H.E. (1996) An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161, 865872.CrossRefGoogle Scholar
Sutton, R. & Sposito, G. (2001) Molecular simulation of interlayer structure and dynamics in 12.4 A Cssmectite hydrates. Journal of Colloid and Interface Science, 237, 174184.CrossRefGoogle ScholarPubMed
Swenson, J., Bergman, R. & Howells, W.S. (2000) Quasielastic neutron scattering of two-dimensional water in a vermiculite clay. Journal of Chemical Physics, 113, 28732879.CrossRefGoogle Scholar
Szabo, T., Szekeres, M., Dekany, I., Jackers, C., DeFeyter, S., Johnston, C.T. & Schoonheydt, R.A. (2007) Layer-by-layer construction of ultrathin hybrid films with proteins and clay minerals. Journal of Physical Chemistry C, 111, 1273012740.Google Scholar
Tanford, C. & Wagner, M.L. (1954) Hydrogen ion equilibria of lysozyme. Journal of the American Chemical Society, 76, 33313336.CrossRefGoogle Scholar
Teppen, B.J. & Miller, D.M. (2006) Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70, 3140.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay-Organic Reactions, John Wiley and Sons, New York, USA, 343 pp.Google Scholar
Thompson, J.G. (1985) Interpretation of solid state 13C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates. Clays and Clay Minerals, 33, 173180.CrossRefGoogle Scholar
Thompson, J.G. & Cuff, C. (1985) Crystal structure of kaolinite:dimethylsulfoxide intercalate. Clays and Clay Minerals, 33, 490500.CrossRefGoogle Scholar
Tonle, I.K., Diaco, T., Ngameni, E. & Detellier, C. (2007) Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chemistry of Materials, 19, 66296636.CrossRefGoogle Scholar
Umemura, Y., Yamagishi, A., Schoonheydt, R., Persoons, A. & De Schryver, F. (2002) Langmuir-Blodgett films of a clay mineral and ruthenium(II) complexes with a noncentrosymmetric structure. Journal of the American Chemical Society, 124, 992997.CrossRefGoogle ScholarPubMed
Venyaminov, S.Y. & Prenderast, F.G. (1997) Water (H2O and D2O) molar absorptivity in the 1000-4000 cm–1 range and quantitative infrared spectroscopy of aqueous solutions. Analytical Biochemistry, 248, 234245.CrossRefGoogle Scholar
Viani, B.E., Low, P.F. & Roth, C.B. (1983) Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. Journal of Colloid and Interface Science, 96, 229244.CrossRefGoogle Scholar
Violante, A., de Cristofaro, A., Rao, M.A. & Gianfreda, L. (1995) Physicochemical properties of protein-smectite and protein-Al(OH)(x)-smectite complexes. Clay Minerals, 30, 325336.CrossRefGoogle Scholar
Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilizing selective-deuteration and infrared spectroscopy. Clay Minerals, 7, 5161.Google Scholar
Walsh, M.A., Schneider, T.R., Sieker, L.C., Dauter, Z., Lamzin, V.S. & Wilson, K.S. (1998) Refinement of triclinic hen egg-white lysozyme at atomic resolution. Ada Crystallographica Section D—Biological Crystallography, 54, 522546.CrossRefGoogle ScholarPubMed
Wang, J.W., Dauter, M., Alkire, R., Joachimiak, A. & Dauter, Z. (2007) Triclinic lysozyme at 0.65 A resolution. Ada Crystallographica Section D-Biological Crystallography, 63, 12541268.CrossRefGoogle ScholarPubMed
Wang, S.L. & Johnston, C.T. (2000) Assignment of the structural OH stretching bands of gibbsite. American Mineralogist, 85, 739744.CrossRefGoogle Scholar
Weissmahr, K.W., Haderlein, S.B. & Schwarzenbach, R.P. (1997) In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals. Environmental Science & Technology, 31, 240247.CrossRefGoogle Scholar
Weissmahr, K.W., Haderlein, S.B. & Schwarzenbach, R.P. (1998) Complex formation of soil minerals with nitroaromatic explosives and other pi-acceptors. Soil Science Society of America Journal, 62, 369378.Google Scholar
Wiewióra, A., Wieckowski, T. & Sokolowska, A. (1979) The Raman spectra of kaolinite sub-group minerals and of pyrophyllite. Archiwum Mineralogiczne, 35, 514.Google Scholar
Wilding, L.P. & Lin, H. (2006) Advancing the frontiers of soil science towards a geoscience. Geoderma, 131, 257274.CrossRefGoogle Scholar
Xu, W., Johnston, C.T., Parker, P. & Agnew, S.F. (2000) Infrared study of water sorption on Na-, Li-, Ca- and Mg-exchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay Minerals, 48, 120131.Google Scholar
Zhu, D.Q., Herbert, B.E., Schlautman, M.A., Carraway, E.R. & Hur, J. (2004) Cation-﹛pi﹜ bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces. Journal of Environmental Quality, 33, 13221330.CrossRefGoogle ScholarPubMed
Zielke, R.C., Pinnavaia, T.J. & Mortland, M.M. (1989) Adsorption and reactions of selected organic-molecules on clay mineral surfaces. Pp. 8198 in: Reactions and Movement of Organic Chemicals in Soils (Sawhney, B.L. & Brown, K., editors). SSSA Special Publication No. 22. Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar