Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-15T17:53:10.566Z Has data issue: false hasContentIssue false

The use of glycerol intercalates in the exchange of CO32− with SO42−, NO3 or Cl in pyroaurite-type compounds

Published online by Cambridge University Press:  09 July 2018

H. C. B. Hansen
Affiliation:
Royal Veterinary and Agricultural University, Chemistry Department, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
R. M. Taylor
Affiliation:
CSIRO, Division of Soils, Private Bag 2, Glen Osmond, South Australia 5064

Abstract

Strongly held carbonates anions in the interlayer region of pyroaurite-type compounds, [MlII1−xM2IIIx(OH)2]x+[(CO3)x/2yH2O]x (x = 0·15−0·44), can be relatively easily exchanged by other anions such as NO3, Cl or SO42− dissolved in heated glycerol. Some Fe(III) of pyroaurite is reduced to Fe(II) by the glycerol treatment. If pyroaurite is treated with glycerol in the absence of dissolved anions or with glycerol vapour at 120°C, glycerol becomes intercalated in the interlayers. In all examples the interlayer CO32− is partially or completely lost as CO2. In aqueous salt solutions a glycerol intercalated form allows other anions to substitute in the interlayer. Expansion in the c-axis direction following glycerol treatment depends on (1) the method of glycerol treatment, (2) the trivalent metal in the octahedral sheet, and (3) the interlayer anions. Heated glycerol causes a different expansion to that produced by its vapour phase at 120°C. The variation in d(003) follows the series: hydrotalcitevap. > pyroauritevap. > hydrotalciteliquid > pyroauriteliquid > SO42−-pyroauritevap. > SO42−-hydrotalcitevap., where liquid refers to glycerol used at 160–180°C and vap. refers to glycerol vapour at 120°C Carbonate-free, glycerol-intercalated pyroaurite compounds may serve as re-usable anion absorbers. Glycerol intercalates of pyroaurite-type compounds may also be useful to study and identify stacking sequences and interlayer compositions in these minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1968) The crystal structure of pyroaurite. Acta Cryst. B24, 972977.Google Scholar
Allmann, R. (1969) Nachtrag zu den Strukturen des Pyroaurits und Sjogrenits. N. Jahrb. Min. Mhft., 552558. Google Scholar
Allman, R. (1970) Doppleschichtstrukturen mit brucit-ahnlichen Schichtionen M111 1-xM2III x(OH)2]x+ . Chimia, 24, 99–108.Google Scholar
Allman, R. & Lohse, H.H. (1966) Die Kristallstruktur des Sjögrenits und eines Umwandlungsproduktes des Koenits (=Chlor-Manasseits). N. Jahrb. Min. Mhft., 161181.Google Scholar
Bish, D.L. (1978) Anion-exchange in takovite: applications to other hydroxide minerals. Bull. B.R.G.M. II, 293301.Google Scholar
Bish D .& Livingstone, A. (1981) The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulphate analogues of reevesite. Mineral. Mag., 44, 339–343.Google Scholar
Bradley, W.F. (1945) Molecular associations between montmoritlonite and some polyfunctional organic liquids. J. Am. Chem. Soc., 67, 975–981.Google Scholar
Brindley, G.W. & Kikkawa, S. (1979) A crystal-chemical study of Mg, A1 and Ni, A1 hydroxy-perchlorates and hydroxy-carbonates. Am. Miner., 64, 836–843.Google Scholar
Cavalcanti, F.A.P., Schutz, A. & Biloen, P. (1987) Interlayer accessibility in layered double-metal hydroxides. Pp. 165174 in: Preparation of Catalysts IV(Delmon, B.P. & Poncelet, G., editors). Elsevier, Amsterdam.Google Scholar
Drits, V.A., Sokolova, T.N., Sokolova, G.V. & Cherkashin, V.I. (1987) New members of the hydrotalcite- manasseite group. Clays Clay Miner., 35, 401417.Google Scholar
Faurholdt, C. & Hansen, K.P. (1942) Studier over monoalkylkarbonater VII. Glycerinets alkycarbonat. Dansk Tidsk. Farm., 16, 73–84 (in Danish).Google Scholar
Fuls, P.F., Rodrique, L. & Fripiat, J.J. (1970) Iron alkoxide obtained by reacting iron oxides with glycerol. Clays Clay Miner., 18, 53–62.Google Scholar
Furst, K. (1948) Ein mikroanalytischer Nachweis des Glycerins mit 2,7-Di-oxynaphthalin. Microchemie ver. Microchim. Acta, 34, 25–29.Google Scholar
Hansen, H.C.B. & Taylor, R.M. (1990) Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: I. The synthesis of pyroaurite and reevesite. Clay Miner., 25, 161179.Google Scholar
Hansen, H.C.B. & Taylor, R.M. (1991) Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions: II. The synthesis of desautelsite. Clay Miner,(in press).Google Scholar
Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L. & Serna, C.J. (1985) IR characteristics of hydrotalcite- like compounds. Phys. Chem. Min., 12, 34–38.Google Scholar
Ingram, L. & Taylor, H.F.W. (1967) The crystal structures of sjogrenite and pyroaurite. Mineral. Mag., 26, 465479.Google Scholar
Kruissink, E.C., van Reijen, L.L. & Ross, J.R.H. (1981) Coprecipitated nickel-alumina catalysts for methanation at higher temperature. J. Chem. Soc. Faraday Trans. 1, 77, 649–663.Google Scholar
Larsen, S. (1949) An apparatus for the determination of small quantities of carbonate. Acta Chem. Scand., 3, 967–970.Google Scholar
MacEwan, D.M.C. (1948) Complexes of clays with organic compounds. I. Complex formation between montmorillionite and halloysite and certain organic liquids. Trans. Faraday Soc., 44, 349–367.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Mascolo, G. & Marino, O. (1980) A new synthesis and characterisation of magnesium hydroxides. Mineral. Mag., 43, 619–621.Google Scholar
Mendiboure, A. & Schollhorn, A. (1986) Formation and anion exchange reactions of layered transition metal hydroxides [Ni1– (CO3)x/2(H2O)z (M = Fe, Co). Rev.Chim. Miner 23, 819827.Google Scholar
Miyata, S. (1975) The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties. I. The systems Mg2+-Al3+-NO3-, Mg2+-Al3+-CP, Mg2+-Al3+-C1-, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clays Clay Miner., 23, 369–375.Google Scholar
Miyata, S. (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner., 31, 305–311.Google Scholar
Miyata, S. & Okada, A. (1977) Synthesis of hydrotalcite-like compounds and their physico-chemical properties— The systems Mg2+-Al3+-SO4 2- and Mg2+-Al3+-CrO4 -. Clays Clay Miner., 25, 14–18.Google Scholar
Pausch, I., Lohse, H.H., Schurmann, K. & Allmann, R. (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays Clay Miner., 34, 507–510.Google Scholar
Radoslovich, E.W., Raupach, M., Slade, P.G. & Taylor, R.M. (1970) Crystalline cobalt, zinc, manganese, andiron alkoxides of glycerol. Aust. J. Chem., 23, 1963–71.CrossRefGoogle Scholar
Raven M, & Self, P.G. (1988) Manipulation of powder X-ray diffraction data. CSIRO Div. Soils Tech. Mem., 30.Google Scholar
Sato, T., Wakabayashi, T. & Shimada, M. (1986) Adsorption of various anions by magnesium aluminium oxide (Mg0.7AI0.3O1.15). Ind. Eng. Chem. Prod. Res. Dev., 25, 89–92.Google Scholar
Taylor, R.M., Hansen, H.C.B. Stanger, G. & Koch, C.B. (1991) On the genesis and composition of natural pyroaurite. Clay Miner., 26, 297–309.CrossRefGoogle Scholar
Thevenot, F., Szymanski, R. & Chaumette, P. (1989) Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds. Clays Clay Miner., 37, 396–402.Google Scholar
Wilson, M.J. (1987) X-ray powder diffraction methods. Pp. 26-98 in: A Handbook of Determinative Methods in Clay Mineralogy(Wilson, M. J., editor). Blackie, Glasgow.Google Scholar