Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T13:55:22.917Z Has data issue: false hasContentIssue false

X-ray powder transmission diffractometry determination of mica polytypes: method and application to natural samples

Published online by Cambridge University Press:  09 July 2018

A. Wiewióra
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, 02-089 Warszawa, Poland
Z. Weiss
Affiliation:
Coal Research Institute, 71607 Ostrava-Radvanice, Czechoslovakia

Abstract

Transmission powder patterns of random and of highly oriented samples of natural micas have been recorded and compared with those calculated from structural data with the aid of the DIFK computer program modified to correct for preferred orientation. Intensities calculated from structural data for random and for highly oriented samples (symmetrical and oblique settings) are presented for 1M, 2M1, 2M2, 3T polytypes of muscovite, 1M, 2M1, 3T polytypes of paragonite and 1M (C2/m and C2 space groups), 2M1, 2M2, 3T polytypes of lepidolite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structures of layer silicates. Chapter 1 in: Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Courville de, J., Tchoubar, D. & Tchoubar, C. (1979) Determination expbrimentale de la function d'orientation—-son application dans les calcul des bandes de diffraction. J. Appl. Cryst. 12, 322338.Google Scholar
Croche, R. (1976) Etude expérimentales et théoriques des corrections d'aberration instrumentales d'un diagramme de diffraction des X. rayons These, Conservatoir National des Arts at Metiers, Paris.Google Scholar
Decker, B.F., Asp, E.T. & Harker, D. (1948) Preferred orientation determination using a Geiger counter X-ray diffraction goniometer. J. Appl. Phys. 19, 388392.CrossRefGoogle Scholar
Fayed, L.A. (1967) An Xray diffractometry technique for preferred orientation studies in rocks. lnt. J. Rock Mech. Sci. 4, 101114.Google Scholar
Guinier, A. (1964) Théorie et Technique de la Radiocrvstallographie. Dunod, Paris.Google Scholar
Güven, N. (1967) The crystal structures of 2M 1 phengite and 2M 1 muscovite. Carn. Inst. Wash., Year Book 66, 487492.Google Scholar
Güven, N. & Burham, W. (1967) The crystal structure of one-layer phlogopite and annite. Am. Miner. 58, 889900.Google Scholar
Klug, H.P. & Alexander, L.E. (1954) Xray Diffraction Procedures. J. Wiley, New York.Google Scholar
Kotov, A.V., Soboleva, S.V., Gojlo, E.A., Zvyagin, B.B. & Frank-Kamenetskij, (1980) Strukturnaya preemstvennost pri sludoobrazovanii po kaolinovym mineralam v gidrotermalnykh usloviyakh. Izv. AN SSSR. ser.geol. 12, 6880.Google Scholar
Krinari, G.A. (1975) O vozmozhnostyakh ispolzovaniya orientirovannykh preparatov dlya registracie nebazalnykh rentgcnovskikh otrazhenie v tonkodispersnykh sloistykh silikatakh. Pp. 132138 in: Kristallokhimiya Mineralov i Geologitheskije Probleme. Izd. Nauka, Moscow.Google Scholar
Munoz, J.L. (1968) Physical properties of synthetic lepidolites. Am. Miner. 53, 14901512.Google Scholar
Plançon, A. (1980) The calculation of intensities diffracted by a partially ordered powder with a layer structure. J. Appl. Cryst. 13, 524528.Google Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction. I. Principle of calculation of the diffraction phenomenon. Clays Clay Miner. 25, 430435.Google Scholar
Plançon, A., Rousseaux, F., Tchoubar, D., Tchoubar, C., Krinari, G. & Drits, V.A. (1982) Recording and calculation of hk rode intensities in case of diffraction by highly oriented powders of lamellar samples. J. Appl. Cryst. 15, 509512.Google Scholar
Ruland, W. & Tompa, H. (1968) The effect of preferred orientation on the intensity distribution of hk interferences. Acta Cryst. A24, 9399.Google Scholar
Sidorenko, O.V., Zvyagin, B.B. & Soboleva, S.V. (1975) Utothnienije krystalytheskoi struktury dioktaedritheskoi slud. 1M. Kryst. 20, 543549.Google Scholar
Sidorenko, O.V., Zvyagin, B.B. & Soboleva, S.V. (1977) Krystallytheskaya struktura paragonit. 3T. Krist. 22, 976981.Google Scholar
Schultz, L.G. (1949) Determination of preferred orientation in flat transmission samples using a geiger counter Xray spectrometer. J. Appl. Phys. 20, 10331036.Google Scholar
Taylor, R.M. & Norrish, K. (1966) The measurement of orientation distribution and its application to quantitative X-ray diffraction analysis. Clay Miner. 6, 127142.Google Scholar
Velde, B. (1965a) Experimental determination of muscovite polymorph stabilities. Am. Miner. 50, 436449.Google Scholar
Velde, B. (1965b) Phengite micas: synthesis, stability and natural occurrences. Am. J. Sci. 263, 886913.Google Scholar
Weiss, Z., Krajiček, J., Smrčok, L. & Fiala, J. (1983) A computer X-ray quantitative phase analysis. J. Appl. Cryst. 16, 493497.Google Scholar
Weiss, Z., Wiewióra, A. & Durovič, S. (1985) Polytypism of micas. III X-ray identification. Clays Clay Miner. (in press).Google Scholar
Wiewióra, A. (1984) X-ray quantitative phase analysis by transmission method with orientation correction for layer silicates. Arch. Miner. 40, 519.Google Scholar
Wiewióra, A., Lącka, B. & Szczyrba, J. (1979) Celadonite, glauconite and skolite: nomenclature and identification problems. Proc. 8th Conf. Clay Mineral. Petrol., Teplice. Geologica, 47-58.Google Scholar
Wiewióra, A., Weiss, Z. & Krajiček, J. (1981) Simulation method for X-ray quantitative analysis of clay samples. Miner. Polon. 12, 313.Google Scholar
Zhoukhlistov, A.P., Zvyagin, B.B., Soboleva, S.V. & Fedotov, A.F. (1973) The crystal structure of the dioctahedral mica 2M 2 determined by high voltage electron diffraction. Clays Clay Miner. 21, 465470.Google Scholar
Zvyagin, B.B. (1964) Electron Diffraction Analysis of Clay Minerals Structures (English translation, 1967). Plenum Press, New York.Google Scholar
Zvyagin, B.B. (1979) Vesokovolntaya Elektronographiya v Issledovanij Sloistykh Mineralov. Izd. Nauka, Moscow.Google Scholar
Zvyagin, B.B., Soboleva, S.V. & Bielkovskij, A.J. (1973) O strukturnom diffraktyonnom svoeobrazii paragonita. Izv. AN USSR, ser. geol., Moscow 5, 6367.Google Scholar