Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-24T10:14:05.829Z Has data issue: false hasContentIssue false

Interpretation of Reflectance Spectra of Clay Mineral-Silica Mixtures: Implications for Martian Clay Mineralogy at Mawrth Vallis

Published online by Cambridge University Press:  01 January 2024

Nancy K. McKeown*
Affiliation:
University of California Santa Cruz, Earth and Planetary Sciences, Santa Cruz, CA 95064, USA
Janice L. Bishop
Affiliation:
SETI Institute, Mountain View, CA 94043, USA
Javier Cuadros
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Stephen Hillier
Affiliation:
James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
Elena Amador
Affiliation:
University of California Santa Cruz, Earth and Planetary Sciences, Santa Cruz, CA 95064, USA
Heather D. Makarewicz
Affiliation:
University of Kansas, Electrical Engineering and Computer Science, Lawrence, KS 66045, USA
Mario Parente
Affiliation:
Stanford University, Electrical Engineering, Stanford, CA 94035, USA
Eli A. Silver
Affiliation:
University of California Santa Cruz, Earth and Planetary Sciences, Santa Cruz, CA 95064, USA
*
* E-mail address of corresponding author: mckeownn@macewan.ca

Abstract

The Al-clay-rich rock units at Mawrth Vallis, Mars, have been identified as mixtures of multiple components based on their spectral reflectance properties and the known spectral character of pure clay minerals. In particular, the spectral characteristics associated with the ~2.2 μm feature in Martian reflectance spectra indicate that mixtures of AlOH- and SiOH-bearing minerals are present. The present study investigated the spectral reflectance properties of the following binary mixtures to aid in the interpretation of remotely acquired reflectance spectra of rocks at Mawrth Vallis: kaolinite-opal-A, kaolinite-montmorillonite, montmorillonite-obsidian, montmorillonite-hydrated silica (opal), and glass-illite-smectite (where glass was hydrothermally altered to mixed-layer illite-smectite). The best spectral matches with Martian data from the present study’s laboratory experiments are mixtures of montmorillonite and obsidian having ~50% montmorillonite or mixtures of kaolinite and montmorillonite with ~30% kaolinite. For both of these mixtures the maximum inflection point on the long wavelength side of the 2.21 μm absorption feature is shifted to longer wavelengths, and in the case of the kaolinite-montmorillonite mixtures the 2.17 μm absorption found in kaolinite is of similar relative magnitude to that feature as observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data. The reflectance spectra of clay mixed with opal and of hydrothermally altered glass-illite-smectite did not represent the Martian spectra observed in this region as well. A spectral comparison of linear vs. intimate mixtures of kaolinite and montmorillonite indicated that for these sieved samples, the intimate mixtures are very similar to the linear mixtures with the exception of the altered glass-illite-smectite samples. However, the 2.17 μm kaolinite absorption is stronger in the intimate mixtures than in the equivalent linear mixture. Modified Gaussian Modeling of absorption features observed in reflectance spectra of the kaolinite-montmorillonite mixtures indicated a strong correlation between percent kaolinite in the mixture and the ratio of the area of the 2.16 μm band found in kaolinite to the area of the 2.20 μm band found in montmorillonite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibring, J.-P. Langevin, Y. Mustard, J.F. Poulet, F. Arvidson, R. Gendrin, A. Gondet, B. Mangold, N. Pinet, P. and Forget, F., 2006 Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data Science 312 400404.CrossRefGoogle ScholarPubMed
Bibring, J.-P. Loizeau, D. Pelkey, S.M. Murchie, S. Mustard, J.F. Bishop, J.L. Ehlmann, B.L. Gondet, B. Mangold, N. Poulet, F. Roach, L.A. and Seelos, F., 2007 Coupled OMEGA-CRISM Observations of Marwth Vallis Lunar and Planetary Science Conference XXXVIII Houston, Texas, USA Lunar and Planetary Institute.Google Scholar
Bishop, J.L. and Dummel, A., 1996 The influence of fine-grained hematite powder on the spectral properties of Mars soil analogs; VIS-NIR bi-directional reflectance spectroscopy of mixtures Lunar and Planetary Science Conference XXVII Houston, Texas, USA Lunar and Planetary Institute.Google Scholar
Bishop, J.L. Pieters, C.M. and Burns, R.G., 1993 Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials Geochimica et Cosmochimica Acta 57 45834595.CrossRefGoogle ScholarPubMed
Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 701715.CrossRefGoogle Scholar
Bishop, J.L. Schiffman, P. Lane, M.D. and Dyar, M.D., 2005 Solfataric alteration in Hawaii as a mechanism for formation of the sulfates observed on Mars by OMEGA and the MER instruments Lunar and Planetary Science Conference XXXVI Houston, Texas, USA Lunar and Planetary Institute.Google Scholar
Bishop, J.L. Lane, M.D. Dyar, M.D. and Brown, A.J., 2008 Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas Clay Minerals 43 3554.CrossRefGoogle Scholar
Bishop, J.L. Noe Dobrea, E.Z. McKeown, N.K. Parente, M. Ehlmann, B.L. Michalski, J.R. Milliken, R.E. Poulet, F. Swayze, G.A. Mustard, J.F. Murchie, S.L. and Bibring, J.-P., 2008 Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars Science 321 830833.CrossRefGoogle ScholarPubMed
Burns, R.G., 1993 Mineralogical Applications of Crystal Field Theory Cambridge, UK Cambridge University Press.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., 2001 Baseline studies of the Clay Minerals Society Source Clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 398409.CrossRefGoogle Scholar
Clark, R.N. King, T.V.V. Klejwa, M. and Swayze, G.A., 1990 High spectral resolution reflectance spectroscopy of minerals Journal of Geophysical Research 95 1265312680.CrossRefGoogle Scholar
de la Fuente, S. Cuadros, J. and Linares, J., 2000 Quantification of mixed-layer illite-smectite in glass matrices by Fourier-transform infrared spectroscopy Clays and Clay Minerals 48 299303.CrossRefGoogle Scholar
de la Fuente, S. Cuadros, J. and Linares, J., 2002 Early stages of volcanic tuff alteration in hydrothermal experiments: formation of mixed-layer illite-smectite Clays and Clay Minerals 50 578590.CrossRefGoogle Scholar
Delineau, T. Allard, T. Muller, J.-P. Barres, O. Yvon, J. and Cases, J.-M., 1994 FTIR reflectance vs EPR studies of structural iron in kaolinites. Clays and Clay Minerals 42 308320.CrossRefGoogle Scholar
Edgett, K.S. and Parker, T.J., 1997 Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani Geophysical Research Letters 24 28972900.CrossRefGoogle Scholar
Fairén, A.G. Chevrier, V. Abramov, O. Marzo, G.A. Gavin, P. Davila, A.F. Tornabene, L.L. Bishop, J.L. Roush, T.L. Gross, C. Kneissl, T. Uceda, E.R. Dohm, J.M. Schulze-Makuch, D. Rodríguez, J.A.P. Amils, R. and McKay, C.P., 2010 Noachian and more recent phyllosilicates in impact craters on Mars Proceedings of the National Academy of Sciences 107 1209512100.CrossRefGoogle ScholarPubMed
Hillier, S. and Lumsdon, D.G., 2008 Distinguishing opaline silica from cristobalite in bentonites: a practical procedure and perspective based on NaOH dissolution Clay Minerals 43 477486.CrossRefGoogle Scholar
Loizeau, D. Mangold, N. Poulet, F. Ansan, V. Hauber, E. Bibring, J.-P. Gondet, B. Langevin, Y. Masson, P. and Neukum, G., 2010 Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM Icarus 205 396418.CrossRefGoogle Scholar
Makarewicz, H.D. Parente, M. and Bishop, J.L., 2008 Characterizing mafic and clay components in Libya Montes, Mars, using automated Gaussian Modeling of spectral features found in MRO/CRISM Images AGU Fall Meeting.Google Scholar
Makarewicz, H.D. Parente, M. and Bishop, J.L., 2009 Deconvolution of VNIR spectra using modified Gaussian modeling (MGM) with automatic parameter initialization (API) applied to CRISM IEEE WHISPERS 2009, Grenoble, France.CrossRefGoogle Scholar
Makarewicz, H.D. Parente, M. and Bishop, J.L., 2009 Determining the composition of phyllosilicates using automated Gaussian modeling of spectral features Lunar and Planetary Science Conference XL Houston, Texas, USA Lunar and Planetary Institute.Google Scholar
Marzo, G.A. Davila, A.F. Tornabene, L.L. Dohm, J.M. Fairén, A.G. Gross, C. Kneissel, T. Bishop, J.L. Roush, T.L. and McKay, C.P., 2010 Evidence for Hesperian impact-induced hydrothermalism on Mars Icarus 208 667683.CrossRefGoogle Scholar
McKeown, N.K. Bishop, J.L. Noe Dobrea, E.Z. Parente, M. Ehlmann, B.L. Mustard, J.F. Murchie, S.L. Swayze, G.A. Bibring, J.-P. and Silver, E.A., 2009 Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate Journal of Geophysical Research — Planets 144 E00D10.Google Scholar
Michaelian, K.H. Friesen, W.I. Yariv, S. and Nasser, A., 1991 Diffuse reflectance infrared spectra of kaolinite and kaolinite/alkali halide mixtures. Curve-fitting of the OH stretching region Canadian Journal of Chemistry 69 17861790.CrossRefGoogle Scholar
Michalski, J.R. and Fergason, R.L., 2008 Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data Icarus 199 2548.CrossRefGoogle Scholar
Michalski, J.R. and Noe Dobrea, E.Z., 2007 Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars Geology 35 951954.CrossRefGoogle Scholar
Milliken, R.E. Swayze, G.A. Arvidson, R.E. Bishop, J.L. Clark, R.N. Ehlmann, B.L. Green, R.O. Grotzinger, J.P. Morris, R.V. Murchie, S.L. Mustard, J.F. and Weitz, C., 2008 Opaline Silica in Young Deposits on Mars Geology 36 847850.CrossRefGoogle Scholar
Murchie, S. Arvidson, R. Bedini, P. Beisser, K. Bibring, J.-P. Bishop, J. Boldt, J. Cavender, P. Choo, T. Clancy, R.T. Darlington, E.H. Des Marais, D. Espiritu, R. Fort, D. Green, R. Guinness, E. Hayes, J. Hash, C. Heffernan, K. Hemmler, J. Heyler, G. Humm, D. Hutcheson, J. Izenberg, N. Lee, R. Lees, J. Lohr, D. Malaret, E. Martin, T. McGovern, J.A. McGuire, P. Morris, R. Mustard, J. Pelkey, S. Rhodes, E. Robinson, M. Roush, T. Schaefer, E. Seagrave, G. Seelos, F. Silvergate, P. Slavney, S. Smith, M. Shyong, W.-J. Strohbehn, K. Taylor, H. Thompson, P. Tossman, B. Wirzburger, M. and Wolff, M., 2007 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) Journal of Geophysical Research 112 E05S03.CrossRefGoogle Scholar
Murchie, S.L. Seelos, F.P. Hash, C.D. Humm, D.C. Malaret, E. McGovern, J.A. Seelos, K.D. Buczkowski, D.L. Morgan, M.F. Barnouin-Jha, O.S. Nair, H. Taylor, H.W. Patterson, G.W. Harvel, C.A. Mustard, J.F. Arvidson, R.E. McGuire, P. Smith, M.D. Wolff, M.J. and Titus, T.N., 2009 Compact Reconnaissance Imaging Spectrometer for Mars Investigation and Data Set from the Mars Reconnaissance Orbiter’s Primay Science Phase Journal of Geophysical Research — Planets 114 E00D07.CrossRefGoogle Scholar
Mustard, J.F. and Pieters, C.M., 1989 Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra Journal of Geophysical Research 94 1361913634.CrossRefGoogle Scholar
Mustard, J.F. Murchie, S.L. Pelkey, S.M. Ehlmann, B.L. Milliken, R.E. Grant, J.A. Bibring, J.-P. Poulet, F. Bishop, J.L. Noe Dobrea, E.Z. Roach, L.A. Seelos, F. Arvidson, R.E. Wiseman, S. Green, R. Hash, C. Humm, D. Malaret, E. McGovern, J.A. Seelos, K. Clancy, R.T. Clark, R.N. Des Marais, D. Izenberg, N. Knudson, A.T. Langevin, Y. Martin, T. McGuire, P. Morris, R.V. Robinson, M. Roush, T. Smith, M. Swayze, G.A. Taylor, H. Titus, T.N. and Wolff, M., 2008 Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument Nature 454 305309.CrossRefGoogle ScholarPubMed
Nash, D.B. and Conel, J.E., 1974 Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite Journal of Geophysical Research 79 16151621.CrossRefGoogle Scholar
Noe Dobrea, E.Z. Bishop, J.L. McKeown, N.K. Fu, R. Rossi, C.M. Michalski, J.R. Heinlein, C. Hanus, V. Poulet, F. Mustard, J.F. Murchie, S.L. McEwen, A.S. Swayze, G.A. Bibring, J.-P. Malaret, E. and Hash, C., 2010 Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin Journal of Geophysical Research — Planets 115 E00D19.CrossRefGoogle Scholar
Parente, M., 2008 A new approach to denoising CRISM images Lunar and Planetary Science Conference XXXIX Houston, Texas, USA Lunar and Planetary Institute.Google Scholar
Parente, M. Makarewicz, H.D. and Bishop, J.L., 2011 Decomposition of mineral sbsorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data Planetary and Space Science 59 423442.CrossRefGoogle Scholar
Petit, S. Mádejova, J. Decarreau, A. and Martin, F., 1999 Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy Clays and Clay Minerals 47 103108.CrossRefGoogle Scholar
Poulet, F. Bibring, J.-P. Mustard, J.F. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R.E. Gondet, B. and Gomez, C., 2005 Phyllosilicates on Mars and implications for the early Mars history Nature 438 632.CrossRefGoogle Scholar
Poulet, F. Mangold, N. Loizeau, D. Bibring, J.-P. Langevin, Y. Michalski, J.R. and Gondet, B., 2008 Abundance of minerals in the phyllosilicate-rich units on Mars Astronomy and Astrophysics 487 L41L44.CrossRefGoogle Scholar
Scott, D.H. and Tanaka, K.L., 1986 Geologic map of western equatorial region of Mars.Google Scholar
Singer, R.B., 1981 Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides Journal of Geophysical Research 86 79677982.CrossRefGoogle Scholar
Sunshine, J.M. and Pieters, C.M., 1993 Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the Modified Gaussian Model Journal of Geophysical Research 98 90759087.CrossRefGoogle Scholar
Sunshine, J.M. Pieters, C.M. and Pratt, S.F., 1990 Deconvolution of mineral absorption bands: An improved approach Journal of Geophysical Research 95 69556966.CrossRefGoogle Scholar
Wray, J.J. Ehlmann, B.L. Squyres, S.W. Mustard, J.F. and Kirk, R.L., 2008 Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars Geophysical Research Letters 35 L12202.CrossRefGoogle Scholar