Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-20T23:29:37.344Z Has data issue: false hasContentIssue false

Alteration of spodumene to cookeite and its pressure and temperature stability conditions in Li-bearing aplite-pegmatites from northern Portugal

Published online by Cambridge University Press:  01 January 2024

Iuliu Bobos*
Affiliation:
GIMEF-Departamento de Geologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
Philippe Vieillard
Affiliation:
UMR-CNRS 6532 HYDRASA, 40 avenue du Recteur Pineau, Université de Poitiers, F-86022 Poitiers Cedex, France
Bernard Charoy
Affiliation:
CRPG-CNRS, Ecole Normale Supérieure de Géologie, F-54501 Vandoeuvre-le`s-Nancy Cedex, France
Fernando Noronha
Affiliation:
GIMEF-Departamento de Geologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
*
*E-mail address of corresponding author: ibobos@fc.up.pt

Abstract

The alteration of spodumene to cookeite has been identified in a Li-bearing aplite-pegmatite from northern Portugal. Optical microscopy and scanning and transmission electron microscopy (SEM/TEM) were used to characterize the alteration products in both cookeite + quartz and cookeite + kaolinite ± mica assemblages. Mutual relationships between the minerals were assessed using back-scattered electron imaging. The first assemblage occurs along the cleavage planes of spodumene, whereas the second forms as the result of spodumene breakdown. Fine mica grains surrounded the cookeite aggregates in the second assemblage only. Precipitations of cookeite and quartz in open pore spaces and parallel packets of cookeite and kaolinite were identified by TEM. Selected area electron diffraction carried out on cookeite identified a layer-stacking sequence from highly disordered to one-layer order-disorder with a lesser participation of two-layer polytypes. The thickness of one-layer cookeite packets averaged ∼85 −100 nm. Disordered cookeite has a mean thickness of 450 nm. The chemistry of cookeite was analyzed by both electron and ionmicroprobe techniques. The structural formula of cookeite from the first assemblage corresponds to: Al2.0(Si3.23Al0.766)O10(OH)2(Al1.80Li1.166Mg0.004Fe0.09)(OH)6. Two distinct compositional varieties were found: one corresponding to ideal cookeite, whereas the second belongs to the cookeite-donbassite join.

The thermodynamic stability field for the observed minerals was calculated using the SUPCRT® programme. Two distinct stages of cookeite crystallization are discussed. The lower pressure and temperature stability of the reaction of spodumene to cookeite + quartz were estimated at ∼2.4 kbar and 240°C. The cookeite + kaolinite ± mica assemblage is still in equilibrium with quartz at ∼2.2 kbar and 220°C. The lower limit for the stability of cookeite was found at 205°C and 2 kbar.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.M. Pascal, M.L. Rao, J. and Helgeson, H.C., (1987) Aluminium speciation in metamorphic fluids Chemical Transport in Metamorphic Processes Dordecht, The Netherlands D. Reidel Publishing Company 297321 10.1007/978-94-009-4013-0_12.CrossRefGoogle Scholar
Arsandaux, M.H., (1901) Sur quelques minéraux des environs de Brassac (Tarn, France) Bulletin de la Société française de Minéralogie 24 428432.CrossRefGoogle Scholar
Bailey, S.W. and Lister, J.S., (1989) Structures, compositions and X-ray diffraction identification of dioctahedral chlorites Clays and Clay Minerals 37 193202 10.1346/CCMN.1989.0370301.CrossRefGoogle Scholar
Berman, R.G., (1988) Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 Journal of Petrology 29 445522 10.1093/petrology/29.2.445.CrossRefGoogle Scholar
Bons, A.J., (1988) Deformation of chlorite in naturally deformed low-grade rocks Tectonophysics 154 149165 10.1016/0040-1951(88)90232-6.CrossRefGoogle Scholar
Brammal, A. Leech, J.G.C. and Bannister, F.A., (1937) The paragenesis of cookeite and hydromuscovite associated with gold at Ogofan, Carmathenshire Mineralogical Magazine 24 507 10.1180/minmag.1937.024.157.01.CrossRefGoogle Scholar
Brisbin, W.C., (1986) Mechanism of pegmatite intrusion American Mineralogist 71 644651.Google Scholar
Burt, D.M. and London, D., (1982) Subsolidus equilibria Short Course Handbook 8 329346.Google Scholar
Carmichael, D.M., (1969) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks Contributions to Mineralogy and Petrology 20 244267 10.1007/BF00377479.CrossRefGoogle Scholar
Černý, P., (1970) Compositional variation in cookeite The Canadian Mineralogist 10 636647.Google Scholar
Černý, P., (1972) The Tanco pegmatite at Bernic lake, Manitoba. Secondary minerals from the spodumene-rich zones The Canadian Mineralogist 11 660678.Google Scholar
Černý, P. Burt, D.M. and Ribbe, P.H., (1991) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granitic pegmatites Micas Washington, D.C Mineralogical Society of America 257297.Google Scholar
Černý, P. Povondra, P. and Stanek, J., (1971) Two cookeites from Czechoslovakia: a boron-rich variety and a IIb polytype Lithos 4 715 10.1016/0024-4937(71)90111-3.CrossRefGoogle Scholar
Charoy, B. Lhote, F. Dusausoy, Y. and Noronha, F., (1992) The crystal chemistry of spodumene in some granitic aplitepegmatite of northern Portugal The Canadian Mineralogist 30 639651.Google Scholar
Charoy, B. Noronha, F. and Lima, A., (2001) Spodumene-petalite-eucryptite mutual relationships and pattern of alteration in Li-rich aplite-pegmatite dikes from northern Portugal The Canadian Mineralogist 39 729746 10.2113/gscanmin.39.3.729.CrossRefGoogle Scholar
Deshpande, M.L., (1978) Lithium resources in India Industrial Minerals 32 4147.Google Scholar
Eberl, D. and Hower, J., (1975) Kaolinite synthesis: the role of the Si/Al and Alkali/H+ ratio in hydrothermal systems Clays and Clay Minerals 23 301309 10.1346/CCMN.1975.0230406.CrossRefGoogle Scholar
Ferreira, N. Iglésias, M. Noronha, F. Ribeiro, A. and Ribeiro, M.L., (1987) Granitóides da zona Centro — Ibérica e seu enquadramento geodinâmico Geologia dos los granitóides y rocas asociadas del Macizo Hesperico. Libro Homenaje a L.C. Garcia de Figuerola, 1 Madrid Editora Rueda 3751.Google Scholar
Fischer, G. Gibergy, P. and Glastre, P., (1989) Découverte de cookeite dans un filon à carbonates et sulfures du Dôme de la Mure (Isère, France) Géologie des Alpes 65 3944.Google Scholar
Flehmig, P.D. and Menschel, G., (1972) Über die lithiumgehalte und das Auftreten von cookeite (Lithium-chlorit) in Permischen Sandsteinen von Nord-Hessen Contributions to Mineralogy and Petrology 34 211223 10.1007/BF00373293.CrossRefGoogle Scholar
Foord, E.E. Starkey, H.C. and Taggart, J.E., (1986) Mineralogy and paragenesis of ‘pocket’ clays and associated minerals in complex granitic pegmatites, San Diego County, California American Mineralogist 71 428439.Google Scholar
Goffé, B., (1977) Présence de cookeite dans les bauxites métamorphiques du Dogger de la Vanoise (Savoie) Bulletin de la Société française de Minéralogie et Cristallographie 100 254257.CrossRefGoogle Scholar
Goffé, B. Baronnet, A. and Morin, G., (1994) La saliotite, interstratifié régulier 1:1 cookéite/paragonite: Un nouveau phyllosilicate du métamorphisme de haute pression et basse température European Journal of Mineralogy 6 897911 10.1127/ejm/6/6/0897.CrossRefGoogle Scholar
Goffé, B. Azañon, J.M. Bouybaouene, M.L. and Jullien, M., (1996) Metamorphic cookeite in Alpine metapelites from the Rif (Morocco) and Betic chain (Spain) European Journal of Mineralogy 8 335348 10.1127/ejm/8/2/0335.CrossRefGoogle Scholar
Gresens, R.L., (1971) Application of hydrolysis to the genesis of pegmatite and kyanite deposits in northern New Mexico Mountain Geologist 8 316.Google Scholar
Heinrich, E.W., (1975) Economic geology and mineralogy of petalite and spodumene pegmatites Indian Journal Earth Sciences 2 1829.Google Scholar
Hemley, J.J. and Johns, W.R., (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen ion metasomatism Economic Geology 59 538569 10.2113/gsecongeo.59.4.538.CrossRefGoogle Scholar
Henmi, K. and Yamamato, T., (1965) Dioctahedral chlorite (sudoite) from Itaya, Okayama Prefecture, Japan Clay Science 2 92101.Google Scholar
Hensen, B.J., (1967) Mineralogy and petrography of some tin, lithium and beryllium albite pegmatites near Doade, Galicia, Spain Leidse Geologische Mededelingen 39 249259.Google Scholar
Ichikawa, A. and Shimoda, S., (1976) Tosudite from the Hokuno mine, Hokuno, Gifu Prefecture Clays and Clay Minerals 24 142148 10.1346/CCMN.1976.0240307.CrossRefGoogle Scholar
Johnson, J.W. Oelkers, E.H. and Helgeson, H.C., (1992) SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bars and 0° to 1000°C Computers and Geosciences 18 899947 10.1016/0098-3004(92)90029-Q.CrossRefGoogle Scholar
Julivert, M., Fontboté, J.M., Ribeiro, A. and Conde, L. (1974) Mapa tectónico de la Península Ibérica y Baleares. Instituto Geológico Minero, Madrid, Espanã, 114 pp.Google Scholar
Jullien, M. Baronnet, A. and Goffé, B., (1996) Ordering of the stacking sequence in cookeite with increasing pressure: An HRTEM study American Mineralogist 81 6778 10.2138/am-1996-1-210.CrossRefGoogle Scholar
Khodakovsky, I.L. and Westrum, E.F. (1988) Guidelines for International Geothermo-dynamics Tables. A set of Prototype Tables. Codata Bulletin, 7X, 113 pp.Google Scholar
Lacroix, A., (1915) Manandonite et cookeite Bulletin de la Société française de Minéralogie et Cristallographie 38 142149.CrossRefGoogle Scholar
Lin, F.C. and Clemency, C.V., (1981) The kinetics of dissolution of muscovites at 25°C and 1 atm CO2, partial pressure Geochimica et Cosmochimica Acta 45 571576 10.1016/0016-7037(81)90190-3.Google Scholar
London, D., (1984) Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites American Mineralogist 69 9951004.Google Scholar
London, D., (1986) Formation of tourmaline-rich gem pockets in miarolitic pegmatites American Mineralogist 71 396405.Google Scholar
London, D. and Burt, D.M., (1982) Alteration of spodumene and lithiophilite in pegmatites of the White Picacho district, Arizona American Mineralogist 67 97113.Google Scholar
Loughnan, F.C. and Steggles, K.R., (1976) Cookeite and diaspore of the Back Creek pyrophyllite deposit near Pambula, N-Wales Mineralogical Magazine 40 765772 10.1180/minmag.1976.040.315.11.CrossRefGoogle Scholar
Mata, P. Peacor, D.R. and López-Aguayo, F., (2004) Polytypism of cookeite in low-grade metapelites of the Cameros Basin, Spain: Lack of correlation of well ordered polytypes with pressure American Mineralogist 89 15101515 10.2138/am-2004-1020.CrossRefGoogle Scholar
Merceron, T. Inoue, A. Bouchet, A. and Meunier, A., (1989) Lithium bearing donbassite and tosudite from Echasières, Massif Central, France Clays and Clay Minerals 36 3946 10.1346/CCMN.1988.0360106.CrossRefGoogle Scholar
Miser, H.D. and Milton, C. (1964) Quartz, rectorite and cookeite of the Jeffrey Quarry, near North Little Rock, Arkansas. Arkansas Geological Commission Bulletin, 21, 29 pp.Google Scholar
Noronha, F. Ramos, J.M.F. Rebelo, J. Ribeiro, A. and Ribeiro, M.L., (1981) Essai de corrélation des phases de déformation hercyniennes dans le NW de la Péninsule Ibérique Leidse Geologische Mededelingen 52 1 8791.Google Scholar
Orliac, M. Permingeat, F. Tollon, F. and Passaqui, B., (1971) Cookeite dans des felons de quartz des Pyrénées centrais (Ariege et Haute-Garonne) Bulletin Société française de Minéralogie et Cristallographie 94 396401.CrossRefGoogle Scholar
Pecora, W.T. Switzer, G. Barbosa, A.L. and Myers, A.T., (1950) Mineralogy of the Golgonda pegmatite, Minas Gerais, Brazil American Mineralogist 35 889901.Google Scholar
Penfield, S.L., (1894) On cookeite from Paris and Hebron, Maine Bulletin de la Société française de Minéralogie et Cristallographie 17 223224.Google Scholar
Quensel, P., (1937) Minerals of the Varutrãsk pegmatite. VI. On the occurrence of cookeite Geologiska Föreningens i Stockholm Förhandlingar 59 262 10.1080/11035893709444953.CrossRefGoogle Scholar
Quensel, P., (1956) The paragenesis of the Varuträsk pegmatite including a review of its mineral assemblage Arkiv för Mineralogi och Geologi 2 9126.Google Scholar
Ren, S.K. Eggleton, R.A. and Walshe, J.L., (1988) The formation of thermal cookeite in the breccia pipes of the Ardletha New South Wales, Australia The Canadian Mineralogist 26 407421.Google Scholar
Rikjs, H.R.P. and Van Der Veen, A.H., (1972) The geology of tin-bearing pegmatites of the eastern part of Kamitivi district, Rhodesia Mineralium Deposita 7 385395.Google Scholar
Sahama, T.G. Knorring, O.V. and Lehtinen, M., (1968) Cookeite from the pegmatite, Zambezia, Mozambique Lithos 1 1219 10.1016/S0024-4937(68)80031-3.CrossRefGoogle Scholar
Sartori, M., (1988) L’unite du Barrhorn (zone Pennique, Valais, Suisse) Switzerland Université de Lausanne 150 pp.Google Scholar
Schmidt, D. and Livi, J.T., (1999) HRTEM and SAED investigations of polytypism, stacking disorder, crystal growth, and vacancies in chlorites from subgreenschist facies outcrops American Mineralogist 84 160170 10.2138/am-1999-1-218.CrossRefGoogle Scholar
Shimada, N. Kusachi, I. and Sugaki, A., (1985) Cookeite from antimony veins of the Cracatoa mines Mineralogical Journal 12 218224 10.2465/minerj.12.218.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., (1993) Weathering of spodumene to smectite in a lateritic environment Clays and Clay Minerals 41 624630 10.1346/CCMN.1993.0410513.CrossRefGoogle Scholar
Spinnler, G.E. Self, P.G. Iijima, S. and Buseck, P.R., (1984) Stacking disorder in clinochlore chlorite American Mineralogist 69 256263.Google Scholar
Stone, C.G. and Milton, C., (1976) Lithium mineralization in Little Rock, Arkansas US Geological Survey Professional Paper 1005 137142.Google Scholar
Sudo, T., Sudo, T. and Shimoda, M., (1978) An outline of clays and clay minerals in Japan Clays and Clay Minerals in Japan Amsterdam Elsevier 1103 10.1016/S0070-4571(08)70682-4.Google Scholar
Theye, T. Seidel, E. and Vidal, O., (1992) Carpholite, sudoite and chloritoid in low-temperature, high-pressure metapelites from Crete and the Peloponnese, Greece European Journal of Mineralogy 4 487507 10.1127/ejm/4/3/0487.CrossRefGoogle Scholar
Velde, B., (1984) Electron microprobe analysis of clay minerals Clay Minerals 19 243247 10.1180/claymin.1984.019.2.11.CrossRefGoogle Scholar
Vidal, O. and Goffé, B., (1991) Cookeite experimental study and thermodynamic analysis of its compatibility relations in the Li2O-Al2O3-SiO2-H2O system Contributions to Mineralogy and Petrology 108 7281 10.1007/BF00307327.CrossRefGoogle Scholar
Wood, S.A. and Williams-Johns, A.E., (1993) Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars Contributions to Mineralogy and Petrology 114 255263 10.1007/BF00307760.CrossRefGoogle Scholar
Zagorsky, V.Y. Peretyazhko, I.S. Sapozhnikov, N.A. Zhukhlistov, A.P. and Zvyagin, B.B., (2003) Borocookeite, a new member of the chlorite group from the Malkhan gem tourmaline deposits, Central Transbaikalia, Russia American Mineralogist 88 830836 10.2138/am-2003-5-611.CrossRefGoogle Scholar
Zotov, A. Mukhametgaleev, A. and Schott, J., (1998) An experimental study of kaolinite and dickite relative stability at 150–300°C and the thermodynamic properties of dickite American Mineralogist 83 516524 10.2138/am-1998-5-611.CrossRefGoogle Scholar