Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T18:20:54.727Z Has data issue: false hasContentIssue false

An Approach to Genesis of Sepiolite and Palygorskite in Lacustrine Sediments of the Lower Pliocene Sakarya and Porsuk Formations in the Sivrihisar and Yunusemre-Biçer Regions (Eskişehir), Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattin Kadir*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Muhsin Eren
Affiliation:
Mersin University, Department of Geological Engineering, TR-33343, Mersin, Turkey
Taner İkeç
Affiliation:
Anitta Park Sitesi, 2853. Cad. 32, Daire 3/15, TR-06810, Ankara, Turkey
Hülya Erkoyun
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Tacit Külah
Affiliation:
Dumlupinar University, Department of Geological Engineering, TR-43100, Kütahya, Turkey
Nergis Önalgil
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Jennifer Huggett
Affiliation:
Natural History Museum, Department of Earth Sciences, London, UK
*
*E-mail address of corresponding author: skadir.euroclay@gmail.com

Abstract

The Lower Pliocene lacustrine sediments of the Sakarya and Porsuk Formations in the Sivrihisar and Yunusemre-Biçer regions consist of claystone, argillaceous carbonate, carbonate, and evaporites. No detailed studies of paleoclimatic conditions have been performed previously. The present study aimed to determine the depositional environment and paleoclimatic conditions for the formation of these economically important sepiolite/palygorskite/carbonate/evaporite deposits based on detailed mineralogical, geochemical, and isotopic studies. Samples from various lacustrine sediments were examined using polarized-light microscopy, X-ray diffraction, scanning electron microscopy, and chemical and isotopic analysis methods. Dolomites are predominantly of micrite, which is partly recrystallized to dolomicrosparite/dolosparite close to desiccation fractures. The presence of ostracods and dacycladecean algae in the carbonates reflects a restricted depositional environment. The formation of sepiolite and palygorskite fibers, either as cement between/enclosing dolomite and/or as calcite crystals, reflects occasional changes in physicochemical conditions provided by fluctuations in the lake-water level and influx of groundwater in relation to climatic changes during and after dolomite precipitation. The positive correlations of ΣREE with Al2O3, Nb, high-field-strength elements, and transition elements are due to alteration of feldspar and hornblende in the volcanic units. The high values of Ba and Sr relative to Cr, Co, Ni, and V also indicate that felsic rather than ophiolitic rocks were the parent material. The crossplot of whole-rock SiO2vs. Al2O3+K2O+Na2O and V/Cr ratio suggests deposition of carbonate-dolomitic sepiolite-sepiolitic dolomite under arid climate and oxic conditions, whereas the Ni/Co and V/(V+Ni) ratios of the sediments indicate deposition of organic-bearing sepiolite/palygorskite under anoxic-dysoxic conditions. An enrichment in δ13C and δ18O values of dolomite with respect to calcite is probably due to differences in mineral fractionations. The δ34S and δ18O values and 87Sr/86Sr isotope ratios for gypsum suggest an intensely evaporitic lacustrine environment fed by an older marine evaporitic source. The Si, Al, Mg, Ca, and enhanced TOT/C required for periodic precipitation of organic-rich brown sepiolite/palygorskite characterize deposition in a swampy environment, while dolomitic sepiolite and sepiolitic dolomite formed in ponds by partial drying of the main alkaline lake.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrari Rudi, M. and Afarin, M., 2016 Interpretation the origin and tectonic setting of coastal sediments in the Northeastern of Oman Sea International Journal of Waste Resources 6 224.Google Scholar
Akbulut, A. and Kadir, S., 2003 The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam basin, Denizli, SW Turkey Clays and Clay Minerals 51 279292.CrossRefGoogle Scholar
Altay, T., 2004 Sivrihisar-Eskişehir yöresinde bulunan jips kristallerinin şekilleri ile oluşum koşullari arasindaki ilişkinin incelenmesi Konya, Turkey Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 115 s.Google Scholar
Altay, T. Karakaya, M. and Erkan, Y., 2007 Sivrihisar Eskişehir yöresinde bulunan farkli şekillerdeki jips oluşumlarinin özellikleri ve oluşum koşullari Selçuk Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi 23 1932.Google Scholar
Altay, T., 2011 Sivrihisar yöresinde bulunan jips kristallerinin mineralojik, petrografik ve kimyasal özellikleri New World Sciences Academy 6 7079.Google Scholar
Aydoğdu, M.N., 2004 Oğlakçi ve Demirci köyleri (KD Sivrihisar) civari Üst Miyosen yaşli evaporitik birimlerin sedimantolojisi Ankara Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, 75 s.Google Scholar
Bellanca, A. Karakaş, Z. Neri, R. and Varol, B., 1993 Sedimentology and isotope geochemistry of lacustrine dolomite-evaporite deposit and associated clays (Neogene, Turkey): environmental implication Mineralogica et Petrographica Acta XXXVI 245264.Google Scholar
Boyraz, S., 2004 Mülk-Demirci yöresi (Eskişehir-Sivrihisar) Neojen (Üst Miyosen-Pliyosen) birimlerinin kil mineralojisi Ankara Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, 85 s.Google Scholar
Braithwaite, C.J.R., 1979 Crystal textures of recent fluvial pisolites and laminated crystalline crusts in Dyfed, South Wales Journal of Sedimentary Petrology 49 181193.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Çelik Karakaya, M. Karakaya, N. Küpeli, , 2011 Mineralogical and geochemical properties of the Na- and Ca-bentonites of Ordu (NE Turkey) Clays and Clay Minerals 59 7594.CrossRefGoogle Scholar
Çelik Karakaya, M. Karakaya, N. and Temel, A., 2011 Mineralogical and geochemical characteristics and genesis of the sepiolite deposits at Polatli basin (Ankara, Turkey) Clays and Clay Minerals 59 286314.CrossRefGoogle Scholar
Chen, B. Liu, G. Wu, D. and Sun, R., 2016 Comparative study on geochemical characterization of the Carboniferous aluminous argillites from the Huainan Coal Basin, China Turkish Journal of Earth Sciences 25 274287.CrossRefGoogle Scholar
Coplen, T.B. Kendall, C. and Hopple, J., 1983 Comparison of stable isotope reference samples Nature 302 236238.CrossRefGoogle Scholar
Ece, I. and Çoban, F., 1994 Geology, occurrence and genesis of Eskişehir sepiolites, Turkey Clays and Clay Minerals 42 8192.CrossRefGoogle Scholar
Eren, M. and Kargi, H., 1995 Calibration curves for quantitative rutile analysis by X-ray diffractometry using lithium fluoride internal standard Çukurova Üniversitesi. Geosound Yerbilimleri Dergisi 27 113.Google Scholar
Faure, G., 1986 Principles of Isotope Geology 2nd edition New York John Wiley & Sons 589.Google Scholar
Fukushima, Y. and Shimosaka, K., 1987 Sepiolite deposit in central Anatolia, Turkey Summaries — Proceedings of the 6th Meeting of the European Clay Groups, Sevilla 226228.Google Scholar
Galán, E. and Pozo, M., 2011 Palygorskite and sepiolite deposits in continental environments. Description, Genetic Patterns and Sedimentary Settings Developments in Palygorskite-Sepiolite Research. A New Outlook on these Nanomaterials 3 125173.CrossRefGoogle Scholar
García-Veigas, J. Cendón, D.I. Pueyo, J.J. and Peryt, T.M., 2011 Zechstein saline brines in Poland, evidence of overturned anoxic ocean during the Late Permian mass extinction event Chemical Geology 290 189201.CrossRefGoogle Scholar
Gehring, A.U. Keller, P. Frey, B. and Luster, J., 1995 The occurrence of spherical morphology as evidence for changing conditions during the genesis of a sepiolite deposit Clay Minerals 30 8386.CrossRefGoogle Scholar
González-Álvarez, I. and Kerrich, R., 2010 REE and HFSE mobility due to protracted flow of basinal brines in the Mesoproterozoic Belt-Purcell Supergroup, Laurentia Precamrian Research 177 291307.CrossRefGoogle Scholar
Gözler, M.Z. Cevher, F. Ergül, E. and Asutay, H.J., 1996.Orta Sakarya ve güneyinin jeolojisi, Mineral Research and Exploration (MTA) Report No. 9973Google Scholar
Güngör, P., 2005 Demirci Köyü (KD Sivrihisar) civari evaporitli serilerin jeokimyasi ve kökeni Ankara Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, 70 s.Google Scholar
Hosono, T. Lorphensriand, O. Onodera, S. Okawa, H. Nakano, T. Yamanaka, T. Tsujimura, M. and Taniguchi, M., 2014 Different isotopic evolutionary trends of δ34S and δ18O compositions of dissolved sulfate in an anaerobic deltaic aquifer system Applied Geochemistry 46 3042.CrossRefGoogle Scholar
Hu, J. Li, Q. Fang, N. Yang, J. and Ge, D., 2015 Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting Arabian Journal of Geosciences 8 53735388.CrossRefGoogle Scholar
İrkeç, T., 1988 General Geological Setting and Character of Turkish Sepiolite Deposits Acta Mineralogica Petrographica, Szeged XXIX 95106.Google Scholar
İrkeç, T., 2011 A General Review of Turkish Sepiolite Deposits, Euroclay 2011, Antalya, Turkey Book of Abstracts 5051.Google Scholar
İrkeç, T. and Ünlü, T., 1993 An Example to Sepiolite Formation in Volcanic Belts by Hydrothermal Alteration: Kιbrιscιk (Bolu) Sepiolite Occurrence Bulletin of The Mineral Research and Exploration 115 4968.Google Scholar
İrkeç, T. and Gençoğlu, H., 1994.Eskişehir-Sivrihisar-Sιğιrcιk/Kurtşeyh Köyleri ÖİR-5342 No.lu Sepiyolit Sahasιna Ait Maden Jeolojisi Raporu (Mining Geology Report of the Eskişehir-Sivrihisar-Sιğιrcιk/Kurtşeyh ÖİR-5342 Sepiolite Licence Area)Google Scholar
ITIT Project Report No. 90-1-5 (1993) Utilization of Sepiolitic and Mg-Bearing Clays in Turkey; GIRIN-MTA Joint Research Project Report (İrkeç, T., editor), Ankara, Turkey-Nagoya, Japan.Google Scholar
Jaques, A.L. Chappel, B.W. and Taylor, S.R., 1983 Geochemistry of cumulus peridotites and gabbros from the Marum Ophiolite Complex, northern Papua New Guinea Contributions to Mineralogy and Petrology 82 154164.CrossRefGoogle Scholar
Jaworska, J. and Ratajczak, R., 2008 Budowa geologiczna struktury solnej Wapna w Wielkopolsce (Geological structure of the Wapno salt dome in Wielkopolska (western Poland) Prace Państwowego Instytutu Geologicznego 190 169.Google Scholar
Jones, B.F. and Galán, E., 1988 Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) 19 631–374.CrossRefGoogle Scholar
Jones, B. and Manning, D.A.C., 1994 Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones Chemical Geology 111 111129.CrossRefGoogle Scholar
Kadir, S. Baş, H. and Karakaş, Z., 2002 Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihaliççik-Eskişehir, Turkey The Canadian Mineralogist 40 10911102.CrossRefGoogle Scholar
Kadir, S. Eren, M. and Atabey, E., 2010 Dolocretes and associated palygorskite occurrences in siliciclastic red mudstones of the Sariyer Formation (Middle Miocene), southeastern side of the Çanakkale strait, Turkey Clays and Clay Minerals 58 205219.CrossRefGoogle Scholar
Kadir, S. Erkoyun, H. Eren, M. Huggett, J. and Önalgil, N., 2016 Mineralogy, geochemistry and genesis of sepiolite and palygorskite in Neogene lacustrine sediments, Eskişehir, west central Anatolia, Turkey Clays and Clay Minerals 64 145166.CrossRefGoogle Scholar
Kahraman, S., 2010 Neogene-Quaternary tectonics of the region between Sivrihisar-Kayakent (Eskişehir)(NW Central Anatolia, Turkey) Ankara Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 91 s.Google Scholar
Karakaş, , 2006 Sivrihisar-Biçer civari Neojen (Üst Miyosen-Pliyosen) basenindeki kil parajenezlerinin ortamsal yorumu Ankara Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 98 s.Google Scholar
Karakaş, Z. and Varol, B., 1994 Sivrihisar Neojen basenindeki gölsel dolomitlerin petrografisi ve oluşum koşullarιnιn duraylι izotoplar (18O; 13C) yardιmιyla yorumlanmasι Maden Tetkik ve Arama Dergisi 116 8195.Google Scholar
Karakaya, N. Çelik Karakaya, M. Temel, A. Küpeli, and Tunoğlu, C., 2004 Mineralogical and chemical characterization of sepiolite occurrences at Karapιnar (Konya basin, Turkey) Clays and Clay Minerals 52 495509.CrossRefGoogle Scholar
Kelts, K. Talbot, M.R., Tilzer, M.M. and Serruya, C., 1989 Lacustrine carbonates as geochemical archives of environmental changes and biotic/abiotic interactions Ecological Structure and Function Berlin Springer 288315.Google Scholar
Kιrtιl, M., 2008 Sazak ve Biçer Köyleri (GD Mihalιççιk) Civarι Neojen Yaşlι Evaporitik Birimlerin Sedimantolojisi Ankara Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, 66 s.Google Scholar
Konak, N., 2002.1/500,000 scale geological map of Turkey — İzmir, General Directorate of Mineral Research and Exploration of TurkeyGoogle Scholar
Külah, T. Kadir, S. Gürel, A. Eren, M. and Önalgil, N., 2014 Mineralogy, geochemistry, and genesis of mudstones in the Upper Miocene Mustafapaşa member of the Ürgüp Formation in the Cappadocia region, central Anatolia, Turkey Clays and Clay Minerals 62 267285.CrossRefGoogle Scholar
Land, L.S., Zenger, D.H. and Ethington, R.L., 1980 The isotopic and trace element geochemistry of dolomite: the state of the art Concept and Models of Dolomitization 87110.CrossRefGoogle Scholar
Lerouge, C. Grangeon, S. Gaucher, E.C. Tournassat, C. Agrinier, P. Guerrot, C. Widory, D. Fléhoc, C. Wille, G. Ramboz, C. Vinsot, A. and Buschaert, S., 2011 Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (France) Geochimica et Cosmochimica Acta 75 26332963.CrossRefGoogle Scholar
Lopez-Galindo, A. Ben Aboud, A. Fenoll Hach-Ali, P. and Casas Ruiz, J., 1996 Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor Clay Minerals 31 3344.CrossRefGoogle Scholar
McLennan, S.M. Nance, W.B. and Taylor, S.R., 1980 Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust Geochimica et Cosmochimica Acta 44 18331839.CrossRefGoogle Scholar
McKenzie, J.A., Stumm, W., 1985 Carbon isotopes and productivity in the lacustrine and marine environment Chemical Processes in Lakes New York Wiley 99118.Google Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 332.Google Scholar
Önal, M. Helvacι, C. Tekin, E. and Ayyιldιz, T., 2008 Sedimentology and geochemistry of the Miocene playa lake evaporites in the Gürün Basin (S of Sivas), central Anatolia, Turkey Carbonates and Evaporites 23 1120.CrossRefGoogle Scholar
Palmer, M.R. Helvaci, C. and Fallick, A.E., 2004 Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites Chemical Geology 209 341356.CrossRefGoogle Scholar
Pozo, M. Carretero, M.I. and Galán, E., 2016 Approach to the trace element geochemistry of non-marine sepiolite deposits: Influence of the sedimentary environment (Madrid Basin, Spain) Applied Clay Science 131 2743.CrossRefGoogle Scholar
Rimmer, S.M., 2004 Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA) Chemical Geology 206 373391.CrossRefGoogle Scholar
Rye, R.O., 2005 A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hyrdrothermal systems Chemical Geology 215 536.CrossRefGoogle Scholar
Rollinson, H.R., 1993 Using Geochemical Data: Evaluation, Presentation, Interpretation London Longman 352.Google Scholar
Sharma, A. Sensarma, S. Kumar, K. Khanna, P.P. and Saini, N.K., 2013 Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate Geochimica et Cosmochimica Acta 104 6383.CrossRefGoogle Scholar
Suttner, L.J. and Dutta, P.K., 1986 Alluvial sandstone composition and paleoclimate, I Framework mineralogy. Journal of Sedimentary Petrology 56 329345.Google Scholar
Talbot, M.R., 1990 A review of the paleohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates Chemical Geology 80 261279.Google Scholar
Talbot, M.R. Kelts, K., Katz, B.J., 1990 Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments Lacustrine Exploration: Case Studies and Modern Analogs Tulsa, Oklahoma, USA American Association of Petroleum Geologists 99112.Google Scholar
Tekin, E., 2001 Stratigraphy, geochemistry and depositional environment of the Celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey) Turkish Journal of Earth Sciences 10 3549.Google Scholar
Turhan, N., 2002.1/500,000 scale geological map of Turkey-Ankara, General Directorate of Mineral Research and Exploration of TurkeyGoogle Scholar
Ünlü, T. Gençoğlu, H. İrkeç, T. Bayhan, H., Srivastava, R.K. and Chandra, R., 1995 Turkish Sepiolite Deposits: A Review Magmatism in Relation to Diverse Tectonic Settings Rotterdam A.A. Balkema 225260.Google Scholar
Varol, B. Tekin, E. Ayyildiz, T. and Karakaş, Z., 2005 Polatlι-Sivrihisar Neojen Baseni Gölsel Evaporitlerinin Sedimantolojisi. 58 Türkiye Jeoloji Kurultayi 113117.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Yeniyol, M., 2014 Characterization of two forms of sepiolite and related Mg-rich clay minerals from Yenidoğan (Sivrihisar, Turkey) Clay Minerals 49 91108.CrossRefGoogle Scholar
Yeşilova, P.G. and Tekin, E., 2007 Polatlι-Sivrihisar Neojen havzasi Üst Miyosen evaporitlerinin jeokimyasal ve jeoistatistiksel incelemesi (Demirci Köyü, KD Sivrihisar-İçAnadolu) Türkiye Jeoloji Bülteni 50 7183.Google Scholar
Yüce, G. Italiano, F. Taskiran, L. Yasin, D. and Gulbay, A.H., 2015 Hydrogeochemical characteristics of Low-Enthalpy geothermal waters from Eskisehir province (Turkey) Proceedings World Geothermal Congress Melbourne, Australia 113.Google Scholar
Zeybek, B., 2007 Porsuk Formasyonu (Pliyosen) evaporitlerinin jeokimyasal incelemesi, Orta Sakarya Bölgesi, İçAnadolu Ankara Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi 91s.Google Scholar