Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T19:32:47.760Z Has data issue: false hasContentIssue false

Cloisite 10A as an Effective Antibacterial Agent in Polymer Matrices: Role of Nanoscale Roughness and Interfacial Interactions

Published online by Cambridge University Press:  01 January 2024

S. Snigdha
Affiliation:
International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India Department of Biotechnology, St. Joseph’s College, 680 121, Irinjalakuda, Kerala, India
K. Nandakumar
Affiliation:
International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India School of Pure and Applied Physics, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India
T. Sabu
Affiliation:
International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India School of Chemical Sciences, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India
E. K. Radhakrishnan*
Affiliation:
School of Biosciences, Mahatma Gandhi University, 686 560, Kottayam, Kerala, India
*
*E-mail address of corresponding author: radhakrishnanek@mgu.ac.in

Abstract

Polymer–filler interactions play a major role in determining the antibacterial activity of organoclay in nanocomposites. The objective of the current study was to determine the effect of polymer type on the antibacterial properties of an organically modified clay – cloisite 10A (C10A) – using poly-ε-caprolactone (PCL) and poly-L-lactic acid (PLA) polymeric systems. Nanocomposite characterization using atomic force microscopy (AFM) showed an increase in roughness upon addition of the clay mineral, and X-ray diffraction (XRD) showed intercalation of the selected polymers into the interlayer spaces of the clay. Transmission electron microscopy (TEM) analysis supported the XRD findings. C10A in PCL thin films enhanced the bactericidal activity against Staphylococcus aureus when compared to the C10A in PLA. The observed change could be the result of pronounced levels of interaction between the filler and polymer matrix in the C10A-PLA nanocomposite when compared to C10A-PCL. The higher interaction levels could hinder the diffusion of bactericidal agents from the nanocomposite membranes. The present study provided insight into the nature of interaction between nanocomposite components and its impact on bioactivity, which can have applications in terms of generating engineered antibacterial materials.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, B. B., Surh, Y.-J., & Shishodia, S. (Eds.). (2007). The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Berlin: Advances in Experimental Medicine and Biology. Springer, Berlin.Google Scholar
Babu, S. S., Augustine, A., Kalarikkal, N., & Thomas, S. (2016a). Nylon 6, 12/Cloisite 30B electrospun nanocomposites for dental applications. Journal of Siberian Federal University. Biology, 9, 198.CrossRefGoogle Scholar
Babu, S. S., Mathew, S., Kalarikkal, N., & Thomas, S. (2016b). Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech, 6, 249.CrossRefGoogle ScholarPubMed
Babu, S. S., Kalarikkal, N., Thomas, S., & Radhakrishnan, E. (2018). Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (L-lactic acid) as evidenced by structural features. Applied Clay Science, 153, 198204.CrossRefGoogle Scholar
Beyth, N., Yudovin-Farber, I., Bahir, R., Domb, A. J., & Weiss, E. I. (2006). Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 27, 39954002.CrossRefGoogle ScholarPubMed
Bower, C. (1949). Studies on the form and availability of organic soil phosphorous. IOWA Agriculture Experiment Station Research Bulletin, 362–339.Google Scholar
Casapao, A. M., Davis, S. L., Barr, V. O., Klinker, K. P., Gof, D. A., Barber, K. E., & 5 others. (2014). Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrobial Agents and Chemotherapy, 58, 25412546.CrossRefGoogle ScholarPubMed
Chandran, N., Chandran, S., Maria, H. J., & Thomas, S. (2015). Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/NR) blend. RSC Advances, 5, 8626586273. https://doi.org/10.1039/c5ra14352gCrossRefGoogle Scholar
Chávez-Montes, W. M., González-Sánchez, G., & FloresGallardo, S. G. (2016). Poly-lactide/exfoliated C30B interactions and influence on thermo-mechanical properties due to artificial weathering. Polymers, 8, 154.CrossRefGoogle ScholarPubMed
Chen, B. (2004). Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms. British Ceramic Transactions, 103, 241249.CrossRefGoogle Scholar
Cheng, Z., & Teoh, S. H. (2004). Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials, 25, 19912001. https://doi.org/10.1016/j.biomaterials.2003.08.038CrossRefGoogle ScholarPubMed
Das, K., Ray, D., & Banerjee, I. (2010). Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. Journal of Applied Polymer Science, 118, 143151. https://doi.org/10.1002/app.32345CrossRefGoogle Scholar
Davis, J. S., Sud, A., O'Sullivan, M. V., Robinson, J. O., Ferguson, P. E., & Foo, H., et al. (2015). Combination of vancomycin and β-lactam therapy for methicillinresistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clinical Infectious Diseases, 62, 173180.CrossRefGoogle ScholarPubMed
Dottori, M., Armentano, I., Fortunati, E., & Kenny, J. (2011). Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures. Journal of Applied Polymer Science, 119, 35443552.CrossRefGoogle Scholar
Elias, E., Chandran, N., Souza, F. G., & Thomas, S. (2016). Segmental dynamics, morphology and thermomechanical properties of electrospun poly (ε-caprolactone) nanofibers in the presence of an interacting filler. RSC Advances, 6, 2137621386.CrossRefGoogle Scholar
Giannakas, A., Vlacha, M., Salmas, C., Leontiou, A., Katapodis, P., Stamatis, H., Barkoula, N.-M., & Ladavos, A. (2016). Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydrate Polymers, 140, 408415.CrossRefGoogle ScholarPubMed
Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., & 4 others. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18, 130.CrossRefGoogle ScholarPubMed
Hong, S.-I., & Rhim, J.-W. (2008). Antimicrobial activity of organically modified nano-clays. Journal of Nanoscience and Nanotechnology, 8, 58185824.CrossRefGoogle ScholarPubMed
Islam, M. S., Azmee, N., Ashaari, Z., AdibAiman, A., Rasyid, A., & Islam, K. H. N. (2017) Properties of wood polymer nanocomposites impregnated with ST-co-EDA/Nanoclay. Macromolecular Symposia, 371, 125128. Wiley Online Library.CrossRefGoogle Scholar
Kim, I. Y., Park, S., Kim, H., Park, S., Ruoff, R. S., & Hwang, S. J. (2014). Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film. Advanced Functional Materials, 24, 22882294.CrossRefGoogle Scholar
Kim, I. Y., Lee, J. M., Hwang, E.-H., Pei, Y.-R., Jin, W.-B., Choy, J.-H., & Hwang, S.-J. (2016). Water-floating nanohybrid films of layered titanate–graphene for sanitization of algae without secondary pollution. RSC Advances, 6, 9852898535.CrossRefGoogle Scholar
Kinnari, T. J., Peltonen, L. I., Kuusela, P., Kivilahti, J., Könönen, M., & Jero, J. (2005). Bacterial adherence to titanium surface coated with human serum albumin. Otology & Neurotology, 26, 380384.CrossRefGoogle ScholarPubMed
Kornmann, X., Lindberg, H., & Berglund, L. A. (2001). Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer, 42, 13031310.CrossRefGoogle Scholar
Li, Q., Yoon, J.-S., & Chen, G.-X. (2011). Thermal and biodegradable properties of poly(l-lactide)/poly(ε-caprolactone) compounded with functionalized organoclay. Journal of Polymers and the Environment, 19, 5968. https://doi.org/10.1007/s10924-010-0256-2CrossRefGoogle Scholar
Luo, J.-J., & Daniel, I. M. (2003). Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Composites Science and Technology, 63, 16071616.CrossRefGoogle Scholar
Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., & Chung, T. (2001). Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials, 13, 35163523.CrossRefGoogle Scholar
Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., & Panayiotou, C. (2008). Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomaterialia, 4, 756765. https://doi.org/10.1016/j.act-bio.2007.12.005CrossRefGoogle ScholarPubMed
Maryan, A. S., & Montazer, M. (2015). Natural and organomontmorillonite as antibacterial nanoclays for cotton garment. Journal of Industrial and Engineering Chemistry, 22, 164170.CrossRefGoogle Scholar
Mehrotra, V. & Giannelis, E. (1989). Conducting molecular multilayers: intercalation of conjugated polymers in layered media. MRS Online Proceedings Library Archive, 171.Google Scholar
Merah, N. & Mohamed, O. (2019). Nanoclay and water uptake effects on mechanical properties of unsaturated polyester. Journal of Nanomaterials, article 8130419.CrossRefGoogle Scholar
Nam, J. Y., Sinha Ray, S., & Okamoto, M. (2003). Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules, 36, 71267131.CrossRefGoogle Scholar
Nguyen, Q. T., & Baird, D. G. (2006). Preparation of polymer– clay nanocomposites and their properties. Advances in Polymer Technology, 25, 270285. https://doi.org/10.1002/adv.20079CrossRefGoogle Scholar
Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K., Deng, H., Zhang, Q., & Fu, Q. (2012). Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Progress in Polymer Science, 37, 14251455.CrossRefGoogle Scholar
Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 11191198. https://doi.org/10.1016/j.progpolymsci.2008.07.008CrossRefGoogle Scholar
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 7683.CrossRefGoogle ScholarPubMed
Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology, 42, 612617.CrossRefGoogle Scholar
Rodríguez-Tobías, H., Morales, G., & Grande, D. (2016). Improvement of mechanical properties and antibacterial activity of electrospun poly (D, L-lactide)-based mats by incorporation of ZnO-graft-poly (D, L-lactide) nanoparticles. Materials Chemistry and Physics, 182, 324331.CrossRefGoogle Scholar
Sorrentino, A., Tortora, M., & Vittoria, V. (2006). Diffusion behavior in polymer–clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 44, 265274.CrossRefGoogle Scholar
Sun, Z., Fan, C., Tang, X., Zhao, J., Song, Y., Shao, Z., & Xu, L. (2016). Characterization and antibacterial properties of porous fbers containing silver ions. Applied Surface Science, 387, 828838.CrossRefGoogle Scholar
Thomas, R., Soumya, K., Mathew, J., & Radhakrishnan, E. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176, 22132224.CrossRefGoogle ScholarPubMed
Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G. Jr. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17, 203218.CrossRefGoogle ScholarPubMed
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 11791184.CrossRefGoogle Scholar
Usuki, A., Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T., & Kamigaito, O. (1995). Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. Journal of Applied Polymer Science, 55, 119123.CrossRefGoogle Scholar
Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5, 16941696.CrossRefGoogle Scholar
Yudovin-Farber, I., Golenser, J., Beyth, N., Weiss, E. I., & Domb, A. J. (2010). Quaternary ammonium polyethyleneimine: antibacterial activity. Journal of Nanomaterials. https://doi.org/10.1155/2010/826343CrossRefGoogle Scholar
Zanetti, M., Lomakin, S., & Camino, G. (2000). Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering, 279, 19.3.0.CO;2-Q>CrossRefGoogle Scholar
Zheng, Y., Li, J., Liu, X., & Sun, J. (2012). Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. International Journal of Nanomedicine, 7, 875.Google ScholarPubMed