Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T06:19:02.999Z Has data issue: false hasContentIssue false

Color Variations Associated with Rapid Formation of Goethite from Proto-Ferrihydrite at pH 13 and 40°C

Published online by Cambridge University Press:  28 February 2024

T. Nagano
Affiliation:
Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-11, Japan
S. Nakashima
Affiliation:
Research Institute of Natural Resources, Akita University, Tegata Gakuenchol-1, Akita 010, Japan
S. Nakayama
Affiliation:
Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-11, Japan
K. Osada
Affiliation:
Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-11, Japan
M. Senoo
Affiliation:
Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-11, Japan

Abstract

Color variations from brown to yellow of synthesized goethite have been studied colorimetrically and spectroscopically. Goethite with various colors was synthesized at pH 13 and 40°C by varying the incubation time. Colorimetry revealed that the b* value (yellowish chroma) in L*a*b* color space was a quantitative indicator of color variations of the diluted samples. From UV-VIS-NIR spectra, the increase in the b* value was found to be caused by the increase in crystal field absorptions due to goethite formation around 500 nm. The b* value was a good indicator of the relative proportion of goethite in the precipitates including ferrihydrite. X-ray diffraction patterns and infrared spectra revealed that crystallization of goethite was associated with loss of water from the proto-ferrihydrite.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amonette, J. E. and Rai, D., 1990 Identification of noncrystalline (Fe,Cr)(OH)3 by infrared spectroscopy Clays & Clay Minerals 38 129136 10.1346/CCMN.1990.0380203.CrossRefGoogle Scholar
Burns, R. G., Berry, F. J. and Vaughan, D. J., 1985 Electronic spectra of minerals Chemical Bonding and Spectroscopy in Mineral Chemistry London Chapman and Hall 63101 10.1007/978-94-009-4838-9_3.CrossRefGoogle Scholar
Chukhrov, F. V., Zvyagin, B. B., Ermilova, L. P. and Gorshkov, A. I., 1973 New data on iron oxides in the weathering zone Proc. Int. Clay Conf. 1972 333341.Google Scholar
Combes, J. M., Manceau, A., Calas, G. and Bottero, Y., 1989 Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: I. Hydrolysis and formation of ferric gels Geochim. Cosmochim. Acta 53 583594 10.1016/0016-7037(89)90001-X.CrossRefGoogle Scholar
Combes, J. M., Manceau, A., Calas, G. and Bottero, Y., 1990 Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: II. Hematite formation from ferric gels Geochim. Cosmochim. Acta 54 10831091 10.1016/0016-7037(90)90440-V.CrossRefGoogle Scholar
Eggleton, R. A. and Fitzpatrick, R. W., 1988 New data and a revised structural model for ferrihydrite Clays & Clay Minerals 36 111124 10.1346/CCMN.1988.0360203.CrossRefGoogle Scholar
Eggleton, R. A. and Fitzpatrick, R. W., 1990 New data and a revised structural model for ferrihydrite: Reply Clays & Clay Minerals 38 335336 10.1346/CCMN.1990.0380315.CrossRefGoogle Scholar
Feitknecht, W. and Michaelis, W., 1962 Über die Hydrolyse von Eisen (III) Perchlorat-Losungen Helv. Chim. Acta 45 212224 10.1002/hlca.19620450127.CrossRefGoogle Scholar
Glemser, O., 1959 Structure of some hydroxides and hydrous oxides Nature 183 943944 10.1038/183943a0.CrossRefGoogle Scholar
Johnston, J. H. and Lewis, D. G., 1983 A detailed study of the transformation of ferrihydrite to hematite in aqueous medium at 95°C Geochim. Cosmochim. Acta 47 18231831 10.1016/0016-7037(83)90200-4.CrossRefGoogle Scholar
Karmanov, I. L. and Rozhkov, V. V., 1972 Experimental determination of quantitative relationships between the colour characteristics of soils and soil constituents Pochvovedeniye 12 7179.Google Scholar
Kosmas, C. S., Franzmeier, D. P. and Schulze, D. G., 1986 Relationship among derivative spectroscopy, color, crystalline dimensions, and Al substitution of synthetic goethites and hematites Clays & Clay Minerals 34 625634 10.1346/CCMN.1986.0340602.CrossRefGoogle Scholar
Kubelka, P., and Munk, F., (1931) Z. Tech. Phys. 12, 593.Google Scholar
Lewis, D. G. and Schwertmann, U., 1980 The effect of [OH] on the goethite produced from ferrihydrite under alkaline conditions J. Colloid Interface Sci. 78 543553 10.1016/0021-9797(80)90591-3.CrossRefGoogle Scholar
Manceau, A., Combes, J. M. and Calas, G., 1990 New data and a revised structural model for ferrihydrite: Comment Clays & Clay Minerals 38 331334 10.1346/CCMN.1990.0380314.CrossRefGoogle Scholar
McCord, T. B., Clark, R. N. and Singer, R. B., 1982 Mars: Near-infrared spectral reflectance of surface regions and compositional implications J. Geophy. Res. 87 30213032 10.1029/JB087iB04p03021.CrossRefGoogle Scholar
Munsell Book of Color, 2.5R-10G, Munsell Color Macbeth Division of Kollmorgen Corporation 1976.Google Scholar
Murray, J. W., 1979 Iron oxides Reviews in Mineralogy 6 4798.Google Scholar
Nagano, T. and Nakashima, S., 1989 Study of colors and degree of weathering of granitic rocks by visible diffuse reflectance spectroscopy Geochem. J. 23 7583 10.2343/geochemj.23.75.CrossRefGoogle Scholar
Nagao, S. and Nakashima, S., 1991 A convenient method of color measurement of marine sediment by chromameter Geochem. J. 25 187197 10.2343/geochemj.25.187.CrossRefGoogle Scholar
Nakashima, S., Miyagi, I., Nakata, E., Sasaki, H., Nittono, S., Hirano, T., Sato, T. and Hayashi, H., 1992 Color measurement of some natural and synthetic minerals—I Rep. Res. Inst. Natural Resources, Mining College, Akita Univ. 57 5776.Google Scholar
Nobuoka, S., 1965 X-ray and infrared absorption studies on the formation process of α-Fe2O3 and a-FeOOH from ferric hydroxide precipitate Kogyo Kagaku Zasshi 68 23112317 10.1246/nikkashi1898.68.12_2311.CrossRefGoogle Scholar
Nyquist, R. A. and Kagel, R. O., 1971 Infrared spectra of inorganic compounds (3800–45 cm−1) New York Academic Press.Google Scholar
Okamoto, S., (1968) Structure of the S-Fe2O3 (hydrate): J. Am. Ceram. Soc. 51, 54.CrossRefGoogle Scholar
Rao, C. N. R., 1963 Organic nitrogen compounds Chemical Applications of Infrared Spectroscopy New York Academic Press 245281.Google Scholar
Schwertmann, U., 1985 The effect of pedogenic environments on iron oxide minerals Adv. Soil Sci. 1 172200.Google Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1988 Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals 267308 10.1007/978-94-009-4007-9_11.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1988 Some properties of soil and synthetic iron oxides Iron in Soils and Clay Minerals 203250 10.1007/978-94-009-4007-9_9.CrossRefGoogle Scholar
Schwertmann, U., Schwertmann, U. and Cornell, R. M., 1991 Methods of characterization Iron Oxides in the Laboratory Weinheim VCH Verlagsgesellschaft mbH 2751.Google Scholar
Schwertmann, U. and Fischer, W. R., 1966 Zur Bildung von α-FeOOH und α-Fe2O3 aus amorphous Eisen(III)-Hydroxid. III Z. Anorg. Allg. Chem. 346 137142 10.1002/zaac.19663460304.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 Effect of pH on the formation of goethite and hematite from ferrihydrite Clays & Clay Minerals 31 277284 10.1346/CCMN.1983.0310405.CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R. M., 1989 Iron oxides Minerals in Soil Environments 2nd ed. 379438.CrossRefGoogle Scholar
Schwertmann, U., Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays & Clay Minerals 33 369378 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Schwertmann, U., Kodama, H. and Fischer, W. R., 1986 Mutual interactions between organics and iron oxides Interactions of Soil Minerals with Natural Organics and Microbes Madison, Wisconsin Soil Sci. Soc. Am. 223250.Google Scholar
Shields, J. A., Paul, R. J. and Head, W. K., 1968 Spectrophotometry measurement of soil color and its relationship to moisture and organic matter Can. J. Soil Sci. 48 271280 10.4141/cjss68-037.CrossRefGoogle Scholar
Singer, R. B., 1982 Spectral evidence for the mineralogy of high-albedo soils and dust on Mars J. Geophy. Res. 87 B12 1015910168 10.1029/JB087iB12p10159.CrossRefGoogle Scholar
Sugiyama, M., 1986 Chroma Meters Minolta Techno Report Osaka Minolta Camera Co. Ltd..Google Scholar
Torrent, J., Schwertmann, U. and Schulze, D. G., 1980 Iron oxide mineralogy of some soils of two river terrace sequences in Spain Geoderma 23 191208 10.1016/0016-7061(80)90002-6.CrossRefGoogle Scholar
Torrent, J., Schwertmann, U., Fechter, H. and Alferez, F., 1983 Quantitative relationships between soil color and hematite content Soil Sci. 136 354358 10.1097/00010694-198312000-00004.CrossRefGoogle Scholar
Towe, K. M. and Bradley, W. F., 1967 Mineralogical constitution of colloidal “hydrous ferric oxides” J. Colloid Interface Sci. 24 384392 10.1016/0021-9797(67)90266-4.CrossRefGoogle Scholar
Van Der Woude, J H A and De Bruyn, P. L., 1983 Formation of colloidal dispersions from supersaturated iron(III) nitrate solutions. I. Precipitation of amorphous iron hydroxide Colloids and Surfaces 8 5578.CrossRefGoogle Scholar