Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-22T14:50:58.364Z Has data issue: false hasContentIssue false

Facies, Geochemistry, and Ceramic Properties of Corumbataí Formation, Upper Permian of Paraná Basin, and its Application in the Ceramic Industry, Brazil

Published online by Cambridge University Press:  01 January 2024

Sergio Ricardo Christofoletti*
Affiliation:
IPA – Environmental Research Institute, Secretary of the Infrastructure and Environment/ FEENA, Rio Claro, SP, Brazil
Alessandro Batezelli
Affiliation:
Geosciences Institute, Unicamp, Campinas, SP, Brazil
Maria Margarita Torres Moreno
Affiliation:
Geosciences and Exact Sciences Institute, UNESP, Rio Claro, SP, Brazil

Abstract

The supply of Corumbataí Formation rocks, which occur widely in the State of São Paulo, Brazil, and are used by Santa Gertrudes Ceramic Cluster, is dwindling and prospecting for new deposits is essential. The current study aimed to map and characterize new reserves of ceramic raw materials which would guarantee mineral and economic sustainability of the important concentration of ceramic-processing capability in that area, and thereby contribute to improving and diversifying the range of products manufactured and to promoting a greater presence in the international market. To achieve the proposed objectives, 16 profiles were sampled and the samples were submitted to granulometric analysis by laser diffraction, and the major elements by inductively coupled plasma-mass spectrometry, and the mineralogical compositions of clay samples were determined by X-ray diffraction and ceramic properties. Six lithofacies were identified and grouped into two facies associations: a lower shoreface association comprising massive siltstone (Sm) and laminated siltstone (Sl); lithofacies, and an upper shoreface association comprising heterolithic sandstone (Sh), lenticular sandstone (Sle), intercalated sandstone/siltstone (Si), and altered siltstone (Sa) lithofacies. The lithofacies of the lower shoreface association were more clayey, flux with a significant presence of illite and microcline, and a more uniform granulometry distribution, which made its classification possible, technologically, as stoneware and semi stoneware. The main application of this material is in the production of coatings through the wet milling process. The lithofacies of the upper shoreface association was sandier, had a refractory presence with kaolinite and montmorillonite, and had a less uniform granulometric distribution; technologically, it can be characterized as porous and semi-porous. The main application of this material is in the production of coatings by the dry milling process. The results obtained by facies analysis combined with the geochemical and ceramic properties of the Corumbataí Formation rocks revealed both vertical and lateral variations of the lithofacies, which influence their properties, behavior, and application as ceramic raw materials.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Selahattin Kadir.

References

Associação Paulista das Cerâmicas de Revestimento-ASPACER. (2021). Panorama da indústria cerâmica paulista. https://www.aspacer.com.br/estatisticas/. Accessed 7 Oct 2021Google Scholar
Azzi, A.A., Marek Osacký, M., Uhlík, P., Mária Čaplovičová, M., Zanardo, A., & Jana Madejová, J. (2016). Characterization of clays from the Corumbataí Formation used as raw material for ceramic industry in the Santa Gertrudes district, São Paulo, Brazil. Applied Clay Science, 111.Google Scholar
Beltrán, V., Sánchez, E., García-Ten, J., & Ginés, F. (1996). Materias primas empleadas en la fabricación de baldosas de pasta blanca en España. Técnica Cerámica, 241, 114128.Google Scholar
Bergaya, F., & Lagaly, G. (2006). General introduction: Clays, clay minerals, and clay science. Developments in Clay Science, 1, 118.CrossRefGoogle Scholar
Boix, A., Gargallo, M., Jordan, M.M., Segura, R., & Sanfeliu, T. (1994). Mineralogy and technological properties of clays used in the ceramic floor and wall tile sector. Técnica Cerámica, 224, 404413.Google Scholar
Brindley, G. W., & Brown, G. (1980). X-ray Diffraction procedures for clay mineral identification. In Brindley, G. W. & Brown, G. (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification (pp. 305360). Mineralogical Society.CrossRefGoogle Scholar
Christofoletti, S. R., & Moreno, M. M. T. (2011). Sustentabilidade da mineração no polo cerâmico de Santa Gertrudes, São Paulo-Brasil. Cerâmica Industrial, 16, 3542.Google Scholar
Christofoletti, S. R., Moreno, M. M. T., & Batezelli, A. (2006). Análise de fácies da Formação Corumbataí (Grupo Passa Dois, Bacia do Paraná, Neopermiano), com vista ao emprego na indústria de revestimento cerâmico. Revista Brasileira De Geociências, 36, 488498.CrossRefGoogle Scholar
Christofoletti, S. R., Moreno, M. M. T., & Motta, J. F. M. (2009). La Formación Corumbataí y su importancia en la industria cerámica del estado de São Paulo-Brasil. Matéria, 14, 705715.Google Scholar
Christofoletti, S.R., Moreno, M.M.T., Del Roveri, C., & Zanardo, A. (2010). Qualidade em cerâmica: 14 anos de pesquisa em matéria prima cerâmica. Anais do 54° Congresso Brasileiro de Cerâmica, Foz do Iguaçu, PR, Brasil.Google Scholar
Christofoletti, S. R., Batezelli, A., & Moreno, M. M. T. (2015). Caracterização geológica, mineralógica, química e cerâmica da Formação Corumbataí nos municípios de Tambaú, Porto Ferreira e Santa Rosa do Viterbo-SP, visando aplicação e diversifcação de produtos no polo cerâmico de Santa Gertrudes. Geociências, 34, 2433.Google Scholar
Costa, M.N.S. (2006). Diagênese e alteração hidrotermal em rochas sedimentares da Formação Corumbataí, Permiano Superior, Mina Granusso, Cordeirópolis/SP. Ph.D. thesis, Universidade Estadual Paulista, Brasil, 140 pp.Google Scholar
Del Roveri, C., Cunha, R.A., Zanardo, A., Godoy, L.H., Moreno, M.M.T., Rocha, R.R., & Maestrelli, S.C. (2016). chemical-mineralogical and microscopic characterization of clay used as raw materials in Santa Gertrudes ceramic pole. Materials Science Forum, 191194.CrossRefGoogle Scholar
Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C., & Marsigli, M. (1999). The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Interceram, 48, 7583.Google Scholar
Dondi, M. (1999). Clay materials for ceramic tiles from the Sassuolo district (northern Apennines, Italy). Geology, composition, and technological properties. Applied Clay Science, 15, 337366.CrossRefGoogle Scholar
Dondi, M., Raimondo, M., & Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91109.CrossRefGoogle Scholar
Fiori, C. (1996). Raw materials for the Italian stoneware tile industry. Industrial Ceramics, 16, 7783.Google Scholar
Ferrari, S., & Gualtieri, A. F. (2006). The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.CrossRefGoogle Scholar
Galos, K. (2011b). Influence of mineralogical composition of applied ball clays on properties of porcelain tiles. Ceramic International, 37, 851861.CrossRefGoogle Scholar
Kadιr, S., Erman, H., & Erkoyun, H. (2011). Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey. Clays and Clay Minerals, 59, 250276.CrossRefGoogle Scholar
Külah, T., Kadir, S., Gürel, A., Eren, M., & Önalgil, N. (2014). Mineralogy, geochemistry, and genesis of mudstones in the Upper Miocene Mustafapaşa Member of the Ürgüp Formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267285.CrossRefGoogle Scholar
Landim, P. M. B. (1970). O Grupo Passa Dois (P) na Bacia do rio Corumbataí (SP). Boletim Divisão Geologia e Mineralogia/DNPM, São Paulo, 252, 103.Google Scholar
Manju, C.S., Nair, V.N., & Lalithambika, M. (2001). Mineralogy, geochemistry, and utilization study of the Madayi kaolin deposit, north Kerala, India. Clays and Clay Minerals, 49, 355369.CrossRefGoogle Scholar
Mezzalira, S. (1964). Grupo Estrada Nova. Boletim do Instituto Geográfico e Geológico, São Paulo, 41, 6384.Google Scholar
Miall, A. D. (1994). Principles of sedimentary basin analysis (p. 490). Springer-Verlag.Google Scholar
Montibeller, C. C., Beltran, R. G., Zanardo, A., Ronh, R., Del Roveri, C., Rocha, R. R., & Conceição, F. T. (2020). Geochemistry of siltstones from the Permian Corumbataí Formation from the Paraná Basin (State of São Paulo, Brazil): Insights of provenance, tectonic and climatic settings. Journal of South American Earth Sciences, 102, 102582.CrossRefGoogle Scholar
Meneghel, E.C. (2021). Caracterização geológica e tecnológica de argilas plásticas em rochas Permianas-Carboníferas da região de Tatuí e Porto Ferreira/SP. Master Dissertation, Universidade Estadual Paulista, Brasil, 111 pp.Google Scholar
Motta, J. F. M., Christofoletti, S. R., Garcez, L. L., Florêncio, R. V. S., Boschi, A. O., Moreno, M. M. T., & Zanardo, A. (2004). Características do pólo de revestimentos cerâmicos de Santa Gertrudes–SP, com ênfase na produção de argilas. Cerâmica Industrial, 9, 16.Google Scholar
Motta, J. F. M., Christofoletti, S. R., Garcez, L. L., Florêncio, R. V., Boschi, A. O., Moreno, M. M. T., Del Roveri, C., & Zanardo, A. (2005). Raw materials for ceramic tiles in the Santa Gertrudes Pole, Brazil. Interceram, 56, 263267.Google Scholar
Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3949.CrossRefGoogle Scholar
Orts, M. J., Campos, B., Pico, M., & Gozalbo, A. (1993). Methods of granulometric analysis: Application in the granulometry control of raw materials. Tile Brick International, 9, 143150.Google Scholar
Penanes, P. A., Reguera-Galan, A., Huelga-Suarez, G., Rodríguez-Castrillón, J. Á., Moldovan, M., & Alonso, J. I. G. (2022). Isotopic measurements using ICP-MS: A tutorial review. Journal of Analytical Atomic Spectrometry, 37, 701726.CrossRefGoogle Scholar
Perinotto, J.A.J.; & Zaine, M.F. (2008). Patrimônios naturais e história geológica da região de Rio Claro-SP. Arquivo Público e Histórico do Município de Rio Claro, 1, 91 pp.Google Scholar
Rollinson, H. R. (1995). Using geochemical data: Evaluation, presentation, interpretation (p. 353). Longman Group.Google Scholar
Salvador, R. B., & Simone, L. R. L. (2010). Histórico dos estudos sobre a malacofauna fóssil da Formação Corumbataí, Bacia do Paraná, Brasil. Revista Da Biologia, 5, 1923.CrossRefGoogle Scholar
Smoot, T. W. (1961). Clay Minerals in the ceramic industries. Clays and Clay Minerals, 10, 309317.CrossRefGoogle Scholar
Sousa, S.H.M. (1985). Fácies sedimentares das formações Estrada Nova e Corumbataí no Estado de São Paulo. Master dissertation, Instituto de Geociências, Universidade de São Paulo, Brasil.Google Scholar
Souza, P. E. C., Christofoletti, S. R., Moreno, M. M. T., & Corrêa, V. F. (2010). A Formação Corumbataí nos municípios de Tambaú e Limeira - SP: Fonte de matéria-prima para o segmento de porcelanato e semi-grés. Cerâmica Industrial, 15, 3034.Google Scholar
Thiry, M. (1974). Technique de préparation des minéraux argileux en vue de l'analyse aux rayons X. Centre National de la Récherche Scientifique (CNRS), Centre de Sedimentologie et Géochimie de la Surface, Strasbourg, 25 pp.Google Scholar
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal Geology, 30, 377392.CrossRefGoogle Scholar
Zalba, P. E. (1979). Clay deposits of Las Aguilas formation, barker, Buenos Aires Province, Argentina. Clays and Clay Minerals, 27, 433439.CrossRefGoogle Scholar
Zanardo, A., Montibeller, C. C., Navarro, G. R. B., Moreno, M. M. T., Rocha, R. R., Del Roveri, C., & Azzi, A. A. (2016). Formação Corumbataí na região de Rio Claro/SP: Petrografia e implicações genéticas. Geociências, 35, 322345.Google Scholar
Zanelli, C., Dondi, M., Guarini, G., Raimondo, M., Domínguez, E., Iglesias, C., & Dondi, M. (2008). The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut provinces, Patagonia (Argentina). Applied Clay Science, 40, 124142.Google Scholar
Zanelli, C., Iglesias, C., Dominguez, E., Gardini, G., Raimondo, M., Guarini, G., & Dondi, M. (2015). Mineralogical composition and particle size distribution as a key to understand the technological properties of Ukrainian ball clays. Applied Clay Science, 108, 102110.CrossRefGoogle Scholar