Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T16:41:34.864Z Has data issue: false hasContentIssue false

Influence of Organic and Inorganic Salts on the Coagulation of Montmorillonite Dispersions

Published online by Cambridge University Press:  28 February 2024

D. Penner
Affiliation:
University of Kiel, Institute of Inorganic Chemistry, D-24098 Kiel, Germany
G. Lagaly
Affiliation:
University of Kiel, Institute of Inorganic Chemistry, D-24098 Kiel, Germany

Abstract

The colloidal state (stable, coagulated, or gel-like) and the rheological properties of Na-rich montmorillonite (Wyoming) dispersions are strongly influenced by organic cations. This effect is shown for homologous organic cations: alkyl trimethylammonium ions, paraquat, diquat, alkyl bispyridinium ions, and the triphenylmethane dyes crystal violet, methyl green, and tris (tri-methylammonium phenyl) methane chloride. The critical coagulation concentrations, cK, are small (often < 1 mmol/L) because the cations are enriched in the Stern layer and influence the solvent structure near the surface. The strong adsorption of the counterions at the clay-mineral surface causes cK values to increase with the solid content. Charge reversal (recharging) of the particles was observed with the longer chain alkyl trimethyl-ammonium ions, dodecyl bispyridinium ions, and crystal violet. Other cations reduced the electrophoretic mobility to zero but positive particle charges were not observed.

The plastic viscosity increased sharply at the critical coagulation concentration and showed a minimum slightly below cK, which was caused by the electroviscous effect. Yield values were developed at concentrations above cK. In most cases, yield values reached a plateau where the amount of organic cations was ∼0.5 mmol/g, i.e., about half of the cation-exchange capacity. The cK values decreased with increasing hydrophobicity of homologous compounds, but the yield value showed maxima at intermediate chain lengths. The yield value of several 0.5% dispersions was high, e.g., dodecyl trimethylammonium ions, 71 Pa; paraquat, 100 Pa; diquat, 42 Pa; hexyl bispyridinium ions, 53 Pa (vs. Ca2+, 0.2 Pa; Al3+, 0.7 Pa). The storage modulus as a function of the number of organic cations changed in a similar way as the yield value, and high values were observed (e.g., dodecyl trimethylammonium ions, hexyl bispyridinium ions: 1000 Pa, paraquat: >4000 Pa). Thus, dispersions with high viscosity, yield value, and pronounced viscoelasticity are obtained by coagulating Na-rich montmorillonite dispersions with organic cations.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, S. and Lagaly, G., 2000 Sol-gel transitions of bentonite dispersions Applied Clay Science 16 201227 10.1016/S0169-1317(99)00040-X.CrossRefGoogle Scholar
Bohmer, M.R. and Koopal, L.K., 1992 Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer Langmuir 8 26492659 10.1021/la00047a014.CrossRefGoogle Scholar
Brüdgam, I. and Hard, H., 1986 Dipyridiniomethan-Diiodid Acta Crystallographica C 42 866868 10.1107/S0108270186094258.CrossRefGoogle Scholar
Chan, D.Y.C. Pashley, R.M. and Quirk, J.P., 1984 Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite Clays and Clay Minerals 32 131138 10.1346/CCMN.1984.0320207.CrossRefGoogle Scholar
Gan, H. and Low, F., 1993 Spectroscopic study of ionic adjustments in the electric double layer of montmorillonite Journal of Colloid and Interface Science 161 15 10.1006/jcis.1993.1432.CrossRefGoogle Scholar
Goldberg, S., 1992 Use of surface complexation models in soil chemical systems Advanced Agronomy 47 233329 10.1016/S0065-2113(08)60492-7.CrossRefGoogle Scholar
Gregory, J., 1973 Rates of flocculation of latex particles by cationic polymers Journal of Colloid and Interface Science 42 448456 10.1016/0021-9797(73)90311-1.CrossRefGoogle Scholar
Güven, N., Güven, N. and Pollastro, R.M., 1992 Rheological aspects of aqueous smectite suspensions Clay-Water Interface and its Rheological Implications Boulder, Colorado The Clay Minerals Society 81126.Google Scholar
Haque, R. Lilley, S. and Coshow, W.R., 1970 Mechanism of adsorption of diquat and paraquat on montmorillonite surface Journal of Colloid and Interface Science 33 185188 10.1016/0021-9797(70)90088-3.CrossRefGoogle Scholar
Hasenpatt, R. Degen, W. and Kahr, G., 1989 Flow and diffusion in clays Applied Clay Science 4 179192 10.1016/0169-1317(89)90007-0.CrossRefGoogle Scholar
Hochstein, B. and Geissle, W., 1995 Linear viscoelastic region exhibited by pure fluids and their suspensions Rheology 5 7279.CrossRefGoogle Scholar
Ijdo, W.L. and Pinnavaia, T.J., 1998 Staging of organic and inorganic gallery cations in layered silicate heterostructures Journal of Solid State Chemistry 139 281289 10.1006/jssc.1998.7842.CrossRefGoogle Scholar
Israelachvili, J., 1994 Intermolecular and Surface Forces London Academic Press.Google Scholar
Knight, G.A. and Shaw, B.D., 1938 Long chain alkylpyridines and their derivatives. New examples of liquid crystals Journal of the American Chemical Society 121 682683 10.1039/jr9380000682.CrossRefGoogle Scholar
Lagaly, G., Wilson, A.D. and Prosser, H.J., 1986 Smectite clays as ionic macromolecules Developments in Ionic Polymers, Volume 2 London Elsevier Applied Science Publication Ltd. 77140 10.1007/978-94-009-4187-8_2.CrossRefGoogle Scholar
Lagaly, G., 1986 Colloids Ullmann’s Encyclopedia of Industrial Chemistry, Volume A7 Weinheim VCH Verlagsgesellschaft 341367.Google Scholar
Lagaly, G. and Kleeberg, H., 1987 Water and solvents on surfaces bristling with alkyl chains Interaction of Water in Ionic and NonIonic Hydrates Berlin Springer-Verlag 229239 10.1007/978-3-642-72701-6_42.CrossRefGoogle Scholar
Lagaly, G., Jasmund, K. and Lagaly, G., 1993 Praktische Verwendung und Einsatzmöglichkeiten von Tonen Tonminerale und Tone—Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt Darmstadt Steinkopff-Verlag 358420.Google Scholar
Lagaly, G. and Dobias, B., 1993 From clay minerals to colloidal clay mineral dispersions Coagulation and Flocculation. Theory and Applications New York Marcel Dekker Inc. 427494.Google Scholar
Lagaly, G. and Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2: 1 Silicate Clay Minerals Boulder, Colorado The Clay Minerals Society 146.Google Scholar
Lagaly, G. and Witter, R., 1982 Clustering of liquid molecules on solid surfaces Berichte der Bunsengesellschaft für Physikalische Chemie 86 7480 10.1002/bbpc.19820860116.CrossRefGoogle Scholar
Lagaly, G. Witter, R. Sander, H., Ottewill, R.H. Rochester, C.H. and Smith, A.L., 1983 Water on hydrophobic surfaces Adsorption from Solution London Academic Press 6577 10.1016/B978-0-12-530980-6.50009-7.CrossRefGoogle Scholar
Lagaly, G. Schulz, O. and Zimehl, R., 1997 Dispersionen und Emulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale (mit einem historischen Beitrag über Kolloidwissenschaftler von Klaus Beneke) Darmstadt Steinkopff Verlag.Google Scholar
Lagaly, G. Reese, M. and Abend, S., 1999 Smectites as colloidal stabilizers of emulsions. II. Rheological properties of smectite-laden emulsions Applied Clay Science 14 279298 10.1016/S0169-1317(99)00004-6.CrossRefGoogle Scholar
Lyklema, J., 1994 Adsorption of ionic surfactants on clay minerals and new insights in hydrophobic interactions Progress in Colloid and Polymer Science 95 9197 10.1007/BFb0115707.CrossRefGoogle Scholar
Margulies, L. and Rozen, H., 1986 Adsorption of methyl green on montmorillonite Journal of Molecular Structure 141 219226 10.1016/0022-2860(86)80326-X.CrossRefGoogle Scholar
Overbeek, J.T.G., 1980 The rule of Schulze and Hardy Pure and Applied Chemistry 52 11511161 10.1351/pac198052051151.CrossRefGoogle Scholar
Permien, T. and Lagaly, G., 1994 The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. I. Flow behaviour of sodium montmorillonite in water-alcohol Clay Minerals 29 751760.Google Scholar
Permien, T. and Lagaly, G., 1994 The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. III. The effect of alcohols on the coagulation of sodium montmorillonite Colloid and Polymer Science 272 13061312 10.1007/BF00657786.CrossRefGoogle Scholar
Philen, O.D. Jr. Weed, S.B. and Weber, J.B., 1970 Estimation of surface charge density of mica and vermiculite by competitive adsorption of diquat vs paraquat Soil Science Society of America Proceedings 34 527531 10.2136/sssaj1970.03615995003400030045x.CrossRefGoogle Scholar
Philen, O.D. Jr Weed, S.B. and Weber, J.B., 1971 Surface charge characterization of layer silicates by competitive adsorption of two organic divalent cations Clays and Clay Minerals 19 295302 10.1346/CCMN.1971.0190505.CrossRefGoogle Scholar
Quirk, J.P. and Marčelja, S., 1997 Application of doublelayer theories to the extensive crystalline swelling of Li+-montmorillonite Langmuir 13 62416248 10.1021/la970484l.CrossRefGoogle Scholar
Raupach, M. Emerson, W.W. and Slade, P.G., 1979 The arrangement of paraquat bound by vermiculite and montmorillonite Journal of Colloid and Interface Science 69 398408 10.1016/0021-9797(79)90129-2.CrossRefGoogle Scholar
Rooy, N. d. Bryn, PL d and Overbeek, J.T.G., 1980 Stability of dispersions in polar organic media. I. Electrostatic stabilization Journal of Colloid and Interface Science 75 542554 10.1016/0021-9797(80)90476-2.CrossRefGoogle Scholar
Rytwo, G. Nir, S. and Margulies, L., 1993 Competitive adsorption of methylene blue and crystal violet to montmorillonite Clay Minerals 28 139143 10.1180/claymin.1993.028.1.12.CrossRefGoogle Scholar
Rytwo, G. Nir, S. and Margulies, L., 1995 Interactions of monovalent organic cations with montmorillonite: Adsorption studies and model calculations Soil Science Society of America Journal 59 554564 10.2136/sssaj1995.03615995005900020041x.CrossRefGoogle Scholar
Rytwo, G. Nir, S. and Margulies, L., 1996 A model for adsorption of divalent organic cations to montmorillonite Journal of Colloid and Interface Science 181 551560 10.1006/jcis.1996.0412.CrossRefGoogle Scholar
Rytwo, G. Nir, S. and Margulies, L., 1996 Adsorption and interactions of diquat and paraquat with montmorillonite Soil Science Society of America Journal 60 601610 10.2136/sssaj1996.03615995006000020038x.CrossRefGoogle Scholar
Schmidt, C.U. and Lagaly, G., 1999 Surface modification of bentonites. I. Betaine montmorillonites and their rheological and colloidal properties Clay Minerals 34 447458 10.1180/000985599546352.CrossRefGoogle Scholar
Schneider, H.J. Schiestel, T. and Zimmermann, P., 1992 The incremental approach to nonvalent interactions: Coulomb and van-der-Waals effects in organic ion pairs Journal of the American Chemical Society 114 76987703 10.1021/ja00046a015.CrossRefGoogle Scholar
Schramm, L.L. and Kwak, J.C.T., 1982 Interactions in clay suspensions: The distribution of ions in suspension and the influence of tactoid formation Colloids and Surfaces 3 4360 10.1016/0166-6622(82)80088-7.CrossRefGoogle Scholar
Schramm, L.L. Yariv, S. Ghosh, D.K. and Hepler, L.G., 1997 Electrokinetic study of the adsorption of ethyl violet and crystal violet by montmorillonite clay particles Canadian Journal of Chemistry 75 18681877 10.1139/v97-620.CrossRefGoogle Scholar
Stul, M.S. and van Leemput, L., 1982 Particle-size distribution, cation exchange capacity and charge density of deferrated montmorillonites Clay Minerals 17 209215 10.1180/claymin.1982.017.2.06.CrossRefGoogle Scholar
Stumm, W. Huang, C.P. and Jenkins, S.R., 1970 Specific chemical interaction affecting the stability of dispersed systems Croatica Chemica Acta 42 223244.Google Scholar
Tributh, H. and Lagaly, G., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstattentonen GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Weed, S.B. and Weber, J.B., 1969 The effect of cation exchange capacity on the retention of diquat and paraquat by three-layer type clay minerals. I. Adsorption and release Soil Science Society of America Proceedings 33 379382 10.2136/sssaj1969.03615995003300030014x.CrossRefGoogle Scholar
Wienberg, R., 1990 Zum Einfluß organischer Schadstoffe auf Deponietone Abfallwirtschaftsjournal 6 393403.Google Scholar
Xu, S. and Boyd, S.A., 1995 Cationic surfactant adsorption by swelling and nonswelling layer silicates Langmuir 11 25082514 10.1021/la00007a033.CrossRefGoogle Scholar
Yariv, S. Müller-Vonmoos, M. Kahr, G. and Rub, A., 1989 Thermal analytical study of the adsorption of crystal violet by laponite Journal of Thermal Analysis 35 19411952 10.1007/BF01911677.CrossRefGoogle Scholar
Yariv, S. Nasser, A. and Baron, P., 1990 Metachromasy in clay minerals. Spectroscopic study of the adsorption of crystal violet by laponite Journal of the the Chemical Society Faraday Transactions 86 15931598 10.1039/ft9908601593.CrossRefGoogle Scholar