Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T07:10:30.366Z Has data issue: false hasContentIssue false

Optical Theory-Based Simulation of Attenuated Total Reflection Infrared Spectra of Montmorillonite Films

Published online by Cambridge University Press:  01 January 2024

Brian Grégoire*
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Baptiste Dazas
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Maud Leloup
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Fabien Hubert
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Emmanuel Tertre
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Eric Ferrage
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
Sabine Petit
Affiliation:
Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
*
*E-mail address of corresponding author: brian.gregoire@univ-poitiers.fr

Abstract

Infrared analyses of clay mineral samples are usually performed by transmission techniques. While transmission measurements are easy and inexpensive, the sample preparation plays a critical role in the quality of the data. Alternatively, attenuated total reflection (ATR) provides a powerful and often simpler analysis method. However, the ATR spectra reveal significant differences when compared to transmission spectra sometimes leading to confusion in the interpretations. Indeed, optical effects play a prominent role in the ATR spectral profile and their identification is mandatory for obtaining quantitative information regarding molecular/particle orientation or film thickness. The objective of the present study was to perform exact spectral simulations of montmorillonite films by making use of optical theory, including the determination of the anisotropic optical constants from the experimental reflectance spectra by Kramers-Kronig (KK) transformation. This methodology was used: (1) to choose the appropriate optical conditions for advanced and reliable characterization of clay minerals; (2) to extract quantitative information such as the estimation of the film thickness; and (3) to discriminate optical phenomena (optical interferences) from chemical/structural features of the sample.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarasinghe, P. M., Katti, K. S., & Katti, D. R. (2008). Molecular hydraulic properties of montmorillonite: A polarized Fourier transform infrared spectroscopic study. Applied Spectroscopy, 62, 13031313.CrossRefGoogle ScholarPubMed
Aufort, J., Ségalen, L., Gervais, C., Brouder, C., & Balan, E. (2016). Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite. Physics and Chemistry of Minerals, 43, 615626.CrossRefGoogle Scholar
Balan, E., Mauri, F., Lemaire, C., Brouder, C., Guyot, F., Saitta, A. M., & Devouard, B. (2002). Multiple ionic-plasmon resonances in naturally occurring multiwall nanotubes: infrared spectra of chrysotile asbestos. Physical Review Letters, 89, 177401.CrossRefGoogle ScholarPubMed
Balan, E., Delattre, S., Roche, D., Segalen, L., Morin, G., Guillaumet, M., Marc Blanchard, M., Lazzeri, M., Brouder, C., & Salje, E. K. H. (2011). Line-broadening effects in the powder infrared spectrum of apatite. Physics and Chemistry of Minerals, 38, 111122.CrossRefGoogle Scholar
Bardwell, J. A., & Dignam, M. J. (1985). Extensions of the Kramers–Kronig transformation that cover a wide range of practical spectroscopic applications. The Journal of Chemical Physics, 83, 54685478.CrossRefGoogle Scholar
Berreman, D. W. (1963). Infrared absorption at longitudinal optic frequency in cubic crystal films. Physical Review, 130, 21932198.CrossRefGoogle Scholar
Bertie, J. E., & Lan, Z. (1996). An accurate modified Kramers–Kronig transformation from reflectance to phase shift on attenuated total reflection. The Journal of Chemical Physics, 105, 85028514.CrossRefGoogle Scholar
Boulet-Audet, M., Buffeteau, T., Boudreault, S., Daugey, N., & Pézolet, M. (2010). Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra. The Journal of Physical Chemistry B, 114, 82558261.CrossRefGoogle ScholarPubMed
Brigatti, M.F., Galán, E., & Theng, B.K.G. (2013). Structure and mineralogy of clay minerals. Pp. 2181 in: Handbook of Clay Science (Vol. 5) (Bergaya, F. and Lagaly, G., editors). Developments in Clay Science, 5 Elsevier.CrossRefGoogle Scholar
Buffeteau, T., Blaudez, D., Péré, E., & Desbat, B. (1999). Optical constant determination in the infrared of uniaxially oriented monolayers from transmittance and reflectance measurements. The Journal of Physical Chemistry B, 103, 50205027.CrossRefGoogle Scholar
Dignam, M. J. (1988). Fourier transform polarization spectroscopy. Applied Spectroscopy Reviews, 24, 99135.CrossRefGoogle Scholar
Dignam, M. J., & Mamiche-Afara, S. (1988). Determination of the spectra of the optical constants of bulk phases via Fourier transform ATR. Spectrochimica Acta Part A: Molecular Spectroscopy, 44, 14351442.CrossRefGoogle Scholar
Esposito, F., Colangeli, L., & Palomba, E. (2000). Infrared reflectance spectroscopy of Martian analogues. Journal of Geophysical Research: Planets, 105, 1764317654.CrossRefGoogle Scholar
Farmer, V. C., & Russell, J. D. (1964). The infra-red spectra of layer silicates. Spectrochimica Acta, 20, 11491173.CrossRefGoogle Scholar
Fraser, R., & MacRae, T. (1973). Conformation in Fibrous Proteins and Related Synthetic Polypeptides. New York: Academic Press.Google Scholar
Glotch, T. D., & Rossman, G. R. (2009). Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 204, 663671.CrossRefGoogle Scholar
Grégoire, B., Dazas, B., Hubert, F., Tertre, E., Ferrage, E., Grasset, L., & Petit, S. (2020). Orientation measurements of clay minerals by polarized attenuated total reflection infrared spectroscopy. Journal of Colloid and Interface Science, 567, 274284.CrossRefGoogle ScholarPubMed
Hansen, W. N. (1965). Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and ultiple ATR spectrometer cells. Spectrochimica Acta, 21, 815833.CrossRefGoogle Scholar
Hansen, W. N. (1968). Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. Journal of the Optical Society of America, 58, 380390.CrossRefGoogle Scholar
Harrick, N. J. (1965). Electric field strengths at totally reflecting interfaces. Journal of the Optical Society of America, 55, 851857.CrossRefGoogle Scholar
Harrick, N.J. & Beckmann, K.H. (1974). Internal reflection spectros-copy. Pp. 215245 in: Characterization of Solid Surfaces (Kane, P.F. and Larrabee, G.B., editors). Springer, Boston, Massachusetts, USA.CrossRefGoogle Scholar
Hasegawa, T. (2017). Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter. Japan: Springer.CrossRefGoogle Scholar
Hind, A. R., Bhargava, S. K., & McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR — the tool of choice. Advances in Colloid and Interface Science, 93, 91114.CrossRefGoogle ScholarPubMed
Huang, J. B., & Urban, M. W. (1992). Evaluation and analysis of attenuated total reflectance FT-IR spectra using Kramers-Kronig transforms. Applied Spectroscopy, 46, 16661672.CrossRefGoogle Scholar
Iglesias, J. E., Ocaña, M., & Serna, C. J. (1990). Aggregation and matrix effects on the infrared spectrum of microcrystalline powders. Applied Spectroscopy, 44, 418426.CrossRefGoogle Scholar
Johnston, C. T., & Premachandra, G. S. (2001). Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir, 17, 37123718.CrossRefGoogle Scholar
Karakassides, M. A., Petridis, D., & Gournis, D. (1997). Infrared reflectance study of thermally treated Li– and Cs-montmorillonites. Clays and Clay Minerals, 45, 649658.CrossRefGoogle Scholar
Lambert, J.-F. (2008). Adsorption and polymerization of amino acids on mineral surfaces: A review. Origins of Life and Evolution of Biospheres, 38, 211242.CrossRefGoogle ScholarPubMed
Larentzos, J. P., Greathouse, J. A., & Cygan, R. (2007). An ab initio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite. The Journal of Physical Chemistry C, 111, 1275212759.CrossRefGoogle Scholar
Lefèvre, G., Preočanin, T., & Lützenkirchen, J. (2012). Attenuated total reflection-Infrared spectroscopy applied to the study of mineral–aqueous electrolyte solution interfaces: a general overview and a case study. Pp. 97122 in: Infrared Spectroscopy (Theophile, T., editor). Intech.Google Scholar
Margulies, L., Rozen, H., & Banin, A. (1988). Use of X-Ray powder diffraction and linear dichroism methods to study the orientation of montmorillonite clay particles. Clays and Clay Minerals, 36, 476479.CrossRefGoogle Scholar
Milosevic, M. (2004). Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: John Wiley & Sons.Google Scholar
Ohta, K., & Ishida, H. (1988). Comparison among several numerical integration methods for Kramers-Kronig transformation. Applied Spectroscopy, 42, 952957.CrossRefGoogle Scholar
Plaskett, J. S., & Schatz, P. N. (1963). On the Robinson and Price (Kramers—Kronig) method of interpreting reflection data taken through a transparent window. The Journal of Chemical Physics, 38, 612617.CrossRefGoogle Scholar
Polubesova, T., & Chefetz, B. (2014). DOM-affected transformation of contaminants on mineral surfaces: A Review. Critical Reviews in Environmental Science and Technology, 44, 223254.CrossRefGoogle Scholar
Ras, R. H. A., Johnston, C. T., Franses, E. I., Ramaekers, R., Maes, G., Foubert, P., De Schryver, F. C., & Schoonheydt, R. A. (2003). Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19, 42954302.CrossRefGoogle Scholar
Ras, R. H. A., Németh, J., Johnston, C. T., Dékány, I., & Schoonheydt, R. A. (2004a). Infrared reflection absorption spectroscopy study of smectite clay monolayers. Thin Solid Films, 466, 291294.CrossRefGoogle Scholar
Ras, R. H. A., Németh, J., Johnston, C. T., Dékány, I., & Schoonheydt, R. A. (2004b). Orientation and conformation of octadecyl rhoda-mine B in hybrid Langmuir–Blodgett monolayers containing clay minerals. Physical Chemistry Chemical Physics, 6, 53475352.CrossRefGoogle Scholar
Ras, R. H. A., Németh, J., Johnston, C. T., DiMasi, E., Dékány, I., & Schoonheydt, R. A. (2004c). Hybrid Langmuir–Blodgett mono-layers containing clay minerals: effect of clay concentration and surface charge density on the film formation. Physical Chemistry Chemical Physics, 6, 41744184.CrossRefGoogle Scholar
Ras, R. H. A., Schoonheydt, R. A., & Johnston, C. T. (2007a). Relation between s-Polarized and p-Polarized Internal Reflection Spectra: Application for the spectral resolution of perpendicular vibrational modes. The Journal of Physical Chemistry A, 111, 87878791.CrossRefGoogle ScholarPubMed
Ras, R. H. A., Umemura, Y., Johnston, C. T., Yamagishi, A., & Schoonheydt, R. A. (2007b). Ultrathin hybrid filmsof clay minerals. Physical Chemistry Chemical Physics, 9, 918932.CrossRefGoogle ScholarPubMed
Roush, T., Pollack, J., & Orenberg, J. (1991). Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite. Icarus, 94, 191208.CrossRefGoogle Scholar
Schampera, B., & Dultz, S. (2009). Determination of diffusive transport in HDPy-montmorillonite by H2O–D2O exchange using in situ ATR-FTIR spectroscopy. Clay Minerals, 44, 249266.CrossRefGoogle Scholar
Schampera, B., Šolc, R., Tunega, D., & Dultz, S. (2016). Experimental and molecular dynamics study on anion diffusion in organically modified bentonite. Applied Clay Science, 120, 91100.CrossRefGoogle Scholar
Stumm, W. (1997). Reactivity at the mineral–water interface: dissolution and inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 143166.Google Scholar
Tolstoy, V.P., Chernyshova, I., & Skryshevsky, V.A. (2003). Handbook of Infrared Spectroscopy of Ultrathin Films: Wiley.CrossRefGoogle Scholar
Wilson Edgar, B. (1980). Molecular Vibrations: the Theory of Infrared and Raman Vibrational Spectra. New York: Dover.Google Scholar
Yamamoto, K., & Ishida, H. (1994). Interpretation of reflection and transmission spectra for thin films: reflection. Applied Spectroscopy, 48, 775787.CrossRefGoogle Scholar