Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T14:14:26.942Z Has data issue: false hasContentIssue false

Polytypism of Micas. I. MDO Polytypes and Their Derivation

Published online by Cambridge University Press:  02 April 2024

K.-O. Backhaus
Affiliation:
Central Institute of Physical Chemistry, Academy of Sciences of the German Democratic Republic, 1199 Berlin-Adlershof, Rudower Chaussee 5, German Democratic Republic
S. Ďurovič*
Affiliation:
Institute of Inorganic Chemistry, Centre of Chemical Research Slovak Academy of Sciences, 842 36 Bratislava, Czechoslovakia
*
1To whom correspondence should be sent.

Abstract

A procedure leading to the systematic derivation of all maximum-degree-of-order (MDO) polytypes in the three mica families, based on the order-disorder (OD) interpretation of mica structures, has been developed. There are 6 non-equivalent (8 non-congruent) homo-octahedral, 14 (22) mesooctahedral, and 36 (60) hetero-octahedral MDO mica polytypes. The ideal ditrigonalization of tetrahedral sheets leads to a splitting of the polytypes in any mica family into two subfamilies with octahedral and trigonal prismatic coordination of the interlayer cations, respectively.

Резюме

Резюме

Исходя их ОД-интерпретации кристаллических структур слюд, был установлен способ систематического вывода всех политипов с максимальной степенью упорядочения (МДО-политипов) для всех трех семейств слюд. Было получено 6 неэквивалентных (8 не конгруентных) гомо-окта- эдрических, 14 (22) мезо-октаэдрических и 36 (60) гетеро-октаэдрических МДО-политипов слюд. Идеальная дитригонализация тетраэдрических сеток приводит к распределению политипов любого семейства слюд на два суб-семейства с октаэдрической и тригонально-призматической координацией межслоевых катионов.

Resümee

Resümee

Es wurde eine Vorgangsweise entwickelt, die zur systematischen Ableitung aller maximaler Ordnungsgrad (MOG) Polytype in den drei Glimmerfamilien führte und auf der Interpretation von Ordnung-Unordnung der Glimmerstrukturen beruht. Es gibt 6 nicht-äquivalente (8 nicht-kongruente) homo-oktaedrische, 14 (22) meso-oktaedrische, und 36 (60) hetero-oktaedrische MOG-Glimmerpolytype. Die ideale Ditrigonalisierung der tetraedrischen Schichten führt zu einer Aufspaltung der Polytype in jeder Glimmerfamilie in zwei Subfamilien mit einer oktaedrischen und einer trigonal prismatischen Koordination der Zwischenschichtkationen. [U.W.]

Résumé

Résumé

On a developé un procédé menant à la dérivation systématique de tous les polytypes de degré d'ordre maximum (MDO) dans les trois familles de mica, basé sur l'interprétation ordre-désordre des structures des micas. Il y a 6 polytypes (MDO) de micas non-équivalents (8 non-congruents) homooctaédraux, 14 (22) méso-octaédraux, et 36 (60) hétéro-octaédraux. La ditrigonalisation idéale de feuilles tétraédrales mène à la scission des polytypes dans toute famille de mica en deux sousfamilles avec une coordination prismatique tétraédrale et trigonale des cations intercouche, respectivement. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W., Brindley, G. W., Keller, W. D., Wones, D. R. and Smith, J. V., 1967 Short Course Lecture Notes. Layer Silicates Amer. Geol. Inst. .Google Scholar
Baronnet, A., 1975 Growth spirals and complex polytypism in micas. I. Polytypic structure generation Acta Crystallogr. A31 345355.CrossRefGoogle Scholar
Christie, O. H. J., 1978 Three-layer monoclinic lepidolite from Tordal, Norway Amer. Mineral. 63 203204.Google Scholar
Domberger-Schiff, K. (1964) Grundziige einer Theorie der OD-Strukturen aus Schichten: Abh. Dtsch. Akad. IViss. Berlin. Kl. f Chem. 3, 107 pp.Google Scholar
Domberger-Schiff, K., 1979 OD structures—a game and a bit more Krist. Techn. 14 10271045.CrossRefGoogle Scholar
Domberger-Schiff, K., 1982 Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind Acta Crystallogr. A38 483491.CrossRefGoogle Scholar
Domberger-Schiff, K., Backhaus, K.-O. and Durovic, S., 1982 Polytypism of micas: OD interpretation, stacking symbols, symmetry relations Clays & Clay Minerals 30 364374.CrossRefGoogle Scholar
Domberger-Schiff, K. and Durovic, S., 1975 OD interpretation of kaolinite-type structures. I: Symmetry of kaolinite packets and their stacking possibilities Clays & Clay Minerals 23 219229.CrossRefGoogle Scholar
Domberger-Schiff, K. and Grell, H., 1982 Geometrical properties of MDO polytypes and procedures for their derivation. II. OD families containing OD layers of M > 1 kinds and their MDO polytypes Acta Crystallogr. A38 491498.CrossRefGoogle Scholar
Domberger-Schiff, K. and Grell-Niemann, H., 1961 On the theory of order-disorder (OD) structures Acta Crystallogr. 14 167177.CrossRefGoogle Scholar
Ďurovič, S. and Weiss, Z., 1983 Polytypism of pyrophyllite and talc, Part I. OD interpretation and MDO polytypes Silikaty 27 118.Google Scholar
Ďurovič, S., Weiss, Z. and Backhaus, K.-O., 1984 Polytypism of micas. II. Classification and abundance of MDO polytypes Clays & Clay Minerals 32 464474.CrossRefGoogle Scholar
Fichtner, K., 1977 Zur Symmetriebeschreibung von OD-Kristallstrukturen durch Brandtsche und Ehresmannsche Gruppoide Beitr. z. Algebra und Geometrie 6 7199.Google Scholar
Franzini, M., 1969 The A and B mica layers and the crystal structure of sheet silicates Contr. Min. Petrol. 21 203224.CrossRefGoogle Scholar
McLaman, T. J., 1981 The number of polytypes in sheet silicates Z. Kristallogr. 155 247268.CrossRefGoogle Scholar
Mogami, K., Nomura, K., Miyamoto, M., Takeda, H. and Sadanaga, R., 1978 On the number of distinct polytypes of mica and SiC with a prime layer-number Canad. Mineral. 16 427435.Google Scholar
Pauling, L., 1930 Structure of chlorites Proc. Nat. Acad. Sci. Washington 16 578582.CrossRefGoogle ScholarPubMed
Radoslovich, E. W., 1961 Surface symmetry and cell dimension of layer-lattice silicates Nature (London) 191 6768.CrossRefGoogle Scholar
Ross, M., Takeda, H. and Wones, D. R., 1966 Mica polytypes: systematic description and identification Science 151 191193.CrossRefGoogle ScholarPubMed
Smith, J. V. and Yoder, H. S., 1956 Experimental and theoretical studies of the mica polymorphs Mineral. Mag. 31 209235.Google Scholar
Takeda, H., 1967 Determination of the layer stacking sequence of a new complex mica polytype: a 4-layer lithium fluorophlogopite Acta Crystallogr. 22 845853.CrossRefGoogle Scholar
Zvyagin, B. B., 1967 Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press.CrossRefGoogle Scholar
Zvyagin, B. B. and Soboleva, S. V., 1974 The generalisation of mica polytypism for noncentric layers of the same displacement parity Collected Abstracts, 2nd European Crystallographic Meeting, 26–29 August 1974, Keszthely, Hungary 165167.Google Scholar
Zvyagin, B. B., Vrublevskaya, Z. V., Zhoukhlistov, A. P., Sidorenko, O. V., Soboleva, S. V. and Fedotov, A. F., 1979 High-Voltage Electron Diffraction in the Investigation of Layered Minerals Moscow Nauka.Google Scholar