Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T10:34:03.332Z Has data issue: false hasContentIssue false

Preparation and Properties of Antibacterial Polyhexamethylene Biguanide/Palygorskite Composites as Zearalenone Adsorbents

Published online by Cambridge University Press:  01 January 2024

Yu R. Kang
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
B. Mu*
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
G. Zhu
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
Yong F. Zhu
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
Ai Q. Wang*
Affiliation:
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Abstract

Due to the environmental problems derived from the use of common surfactants as modifiers for clay mineral adsorbents to mitigate mycotoxin contamination of animal feeds, finding non-toxic modifiers to prepare safe and efficient adsorbents is necessary. The objective of the present study was, therefore, to modify acidified palygorskite with polyhexamethylene biguanide (PHMB) to obtain antibacterial polyhexamethylene biguanide/palygorskite (PHMB/Plg) composites for the removal of zearalenone, a common mycotoxin. The PHMB/Plg composites were characterized and analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and isothermal nitrogen adsorption analysis. The adsorption properties of the composites with respect to zearalenone and their antibacterial activity with respect to Escherichia coli and Staphylococcus aureus were studied. The results indicated that the hydrophobicity of palygorskite was enhanced after modification with PHMB, which could effectively improve the adsorption property of palygorskite toward the nonpolar zearalenone molecules. The adsorption capacity of PHMB/Plg increased with increasing amounts of polyhexamethylene biguanide and increasing pH. The adsorption data were described well by pseudo-second order kinetics and by the Langmuir adsorption model. The maximum adsorption capacity was 2777 μg/g. When the amount of PHMB added increased to 15 wt.%, the composites obtained exhibited good antibacterial performance, and the minimum inhibitory concentrations for Escherichia coli and Staphylococcus aureus were both at 2.5 mg/mL.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asadi, L., Mokhtari, J., & Abbasi, M. (2021). An alginate-PHMB-AgNPs based wound dressing polyamide nanocomposite with improved antibacterial and hemostatic properties. Journal of Materials Science: Materials in Medicine, 32(1), 111. https://doi.org/10.1007/s10856-020-06484-5Google ScholarPubMed
Bai, X. J., Sun, C. P., Xu, J., Liu, D., Han, Y. Y., Wu, S. L., & Luo, X. H. (2017). Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems. Applied Surface Science, 430,198-207. https://doi.org/10.1016/j.apsusc.2017.06.055Google Scholar
Chang, X. J., Liu, H. J., Sun, J., Wang, J., Zhao, C. C., Zhang, W., Zhang, J., & Sun, C. P. (2020). Zearalenone removal from corn oil by an enzymatic strategy. Toxins, 12(2), 117. https://doi.org/10.3390/toxins12020117CrossRefGoogle ScholarPubMed
de Brito Buriti, B. M. A., Barsosa, M. E., da Silva Buriti, J., de Melo Cartaxo, J., Ferreira, H. S., & de Araujo Neves Cartaxo, G. (2022). Modification of palygorskite with cationic and nonionic surfactants for use in oil-based drilling fluids. Journal of Thermal Analysis and Calorimetry,1–11. https://doi.org/10.1007/s10973-021-10701-wCrossRefGoogle Scholar
Desai, H., Biswal, N. R., & Paria, S. (2010). Rheological behavior of pyrophyllite-water slurry in the presence of anionic, cationic, and nonionic surfactants. Industrial & Engineering Chemistry Research, 49(11), 54005406. https://doi.org/10.1021/ie901643sCrossRefGoogle Scholar
Dilamian, M., Montazer, M., & Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydrate Polymers, 94(1), 364371. https://doi.org/10.1016/j.carbpol.2013.01.059CrossRefGoogle ScholarPubMed
Dong, R., Liu, Y. F., Wang, X. G., & Huang, J. H. (2011). Adsorption of sulfate ions from aqueous solution by surfactant-modified palygorskite. Journal of Chemical and Engineering Data, 56(10), 38903896. https://doi.org/10.1021/je200544nCrossRefGoogle Scholar
Dong, W. K., Lu, Y. S., Wang, W. B., Zong, L., Zhu, Y. F., Kang, Y. R., & Wang, A. Q. (2019). A new route to fabricate high-efficient porous silicate adsorbents by simultaneous inorganic-organic functionalization of low-grade palygorskite clay for removal of Congo red. Microporous and Mesoporous Materials, 277, 267276. https://doi.org/10.1016/j.micromeso.2018.11.013CrossRefGoogle Scholar
Feng, J. L., Mei, S., Du, H. H., Han, X. Y., & Xu, Z. R. (2008). In vitro adsorption of zearalenone by cetyltrimethyl ammonium bromide-modified montmorillonite nanocomposites. Microporous and Mesoporous Materials, 113(1-3), 99105.https://doi.org/10.1016/j.micromeso.2007.11.007CrossRefGoogle Scholar
Fu, H., Liu, J. P., Xu, W., Wang, H. X., Liao, S. H., & Chen, G. T. (2020). A new type of magnetic molecular imprinted material combined with beta-cyclodextrin for the selective adsorption of zearalenone. Journal of Materials Chemistry B, 8(48), 1096610976. https://doi.org/10.1039/D0TB02146FCrossRefGoogle ScholarPubMed
Gan, F. Q., Hang, X. S., Huang, Q. Y., & Deng, Y. J. (2019). Assessing and modifying China bentonites for aflatoxin adsorption. Applied Clay Science, 168,348–354. https://doi.org/10.1016/j.clay.2018.12.001CrossRefGoogle Scholar
Gruber-Dorninger, C., Faas, J., Doupovec, B., Aleschko, M., Stoiber, C., Hobartner-Gussl, A., Schondorfer, K., Killinger, M., Zebeli, Q., & Schatzmayr, D. (2021). Metabolism of zearalenone in the rumen of dairy cows with and without application of a zearalenone-degrading enzyme. Toxins, 13(2), 84. https://doi.org/10.3390/toxins13020084CrossRefGoogle ScholarPubMed
Hachemaoui, M., Boukoussa, B., Mokhtar, A., Me Kki, A., Beldjilali, M., Benaissa, M., Zaoui, F., Hakiki, A., Chaibi, W., Sassi, M., & Hamacha, R. B. (2020). Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: Effect of metal and calcination treatment. Materials Chemistry and Physics, 256, 123704. https://doi.org/10.1016/j.matchemphys.2020.123704CrossRefGoogle Scholar
Hui, A. P., Dong, S. Q., Kang, Y. R., Zhou, Y. M., & Wang, A. Q. (2019). Hydrothermal fabrication of spindle-shaped ZnO/palygorskite nanocomposites using nonionic surfactant for enhancement of antibacterial activity. Nanomaterials, 9, 1453. https://doi.org/10.3390/nano9101453CrossRefGoogle ScholarPubMed
Hui, A. P., Yan, R., Wang, W. B., Wang, Q., & Wang, A. Q. (2020). Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydrate Polymers, 247, 1 16685. https://doi.org/10.1016/j.carbpol.2020.116685CrossRefGoogle ScholarPubMed
Kalagatur, N. K., Karthick, K., Allen, J. A., Nirmal Ghosh, O. S., Chandranayaka, S., Gupta, V. K., & Mudili, V. (2017). Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin. Frontiers in Pharmacology, 8, 760. https://doi.org/10.3389/fphar.2017.00760CrossRefGoogle ScholarPubMed
Leitgeb, J., Schuster, R., Eng, A. H., Yee, B. N., Teh, Y. P., Dosch, V., & Assadian, O. (2013). In-vitro experimental evaluation of skin-to-surface recovery of four bacterial species by antibacterial and non-antibacterial medical examination gloves. Antimicrobial Resistance and Infection Control, 2,1–6. https://doi.org/10.1186/2047-2994-2-27CrossRefGoogle ScholarPubMed
Li, Y., Tian, G. Y., Dong, G. Y., Bai, S. S., Han, X. Y., Liang, J. S., Meng, J. P., & Zhang, H. (2018). Research progress on the raw and modified montmorillonites as adsorbents for mycotoxins: A review. Applied Clay Science, 163, 299311. https://doi.org/10.1016/j.clay.2018.07.032CrossRefGoogle Scholar
Li, Y. J., Zeng, L., Zhou, Y., Wang, T. F., & Zhang, Y. J. (2014). Preparation and characterization of montmorillonite intercalation compounds with quaternary ammonium surfactant: Adsorption effect of zearalenone. Journal of Nanomaterials, 2014, 167402. https://doi.org/10.1155/2014/167402Google Scholar
Markovic, M., Dakovic, A., Rottinghaus, G. E., Petkovic, A., Kragovic, M., Krajisnik, D., & Milic, J. (2017). Ochratoxin a and zearalenone adsorption by the natural zeolite treated with benzalkonium chloride. Colloids and Surfaces A Physicochemical and Engineering Aspects, 529,7–17. https://doi.org/10.1016/j.colsurfa.2017.05.054CrossRefGoogle Scholar
Mu, B., Kang, Y. R., & Wang, A. Q. (2013). Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals. Journal of Materials Chemistry A, 1,4804–4811. https://doi.org/10.1039/c3ta01620jCrossRefGoogle Scholar
Peng, J. M., Liu, P. M., Peng, W., Sun, J., Dong, X. H., Ma, Z. Z., Gan, D. L., Liu, P. S., & Shen, J. (2021). Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. Journal of Hazardous Materials, 411, 125110. https://doi.org/10.1016/j.jhazmat.2021.125110CrossRefGoogle ScholarPubMed
Sadia, A., Dykes, L., & Deng, Y. J. (2016). Transformation of adsorbed aflatoxin b-1 on smectite at elevated temperatures. Clays and Clay Minerals, 64(3), 220229. https://doi.org/10.1346/CCMN.2016.0640306CrossRefGoogle Scholar
Sandbacka, M., Christianson, I., & Isomaa, B. (2000). The acute toxicity of surfactants on fish cells, daphnia magna and fish–a comparative study. Toxicology in Vitro An International Journal Published in Association with Bibra, 14(1), 6168. https://doi.org/10.1016/S0887-2333(99)00083-1Google ScholarPubMed
Shi, L. X., Zhang, W., Yang, K., Shi, H. G., Li, D., Liu, J., Ji, J. H., & Chu, P. K. (2015). Antibacterial and osteoinductive capability of orthopedic materials via cation-π interaction mediated positive charge. Journal of Materials Chemistry B, 3(5), 733737. https://doi.org/10.1039/C4TB01924ECrossRefGoogle ScholarPubMed
Sowlati-Hashjin, S., Carbone, P., & Karttunen, M. (2020). Insights into the polyhexamethylene biguanide (phmb) mechanism of action on bacterial membrane and dna: A molecular dynamics study. Journal of Physical Chemistry B, 124(22), 44874497. https://doi.org/10.1021/acs.jpcb.0c02609CrossRefGoogle ScholarPubMed
Spasojevic, M., Dakovic, A., Rottinghaus, G. E., Obradovic, M., Krajisnik, D., Markovic, M., & Krstic, J. (2021). Influence of surface coverage of kaolin with surfactant ions on adsorption of ochratoxin a and zearalenone. Applied Clay Science, 205, 106040. https://doi.org/10.1016/j.clay.2021.106040CrossRefGoogle Scholar
Sprynskyy, M., Gadzala-Kopciuch, R., Nowak, K., & Buszewski, B. (2012). Removal of zearalenone toxin from synthetics gastric and body fluids using talc and diatomite: A batch kinetic study. Colloids & Surfaces B Biointerfaces, 94, 714. https://doi.org/10.1016/j.colsurfb.2011.12.024CrossRefGoogle ScholarPubMed
Sun, X. L., He, X. X., Xue, K. S., Li, Y., Xu, D., & Qian, H. (2014). Biological detoxification of zearalenone by aspergillus Niger strain FS10. Food and Chemical Toxicology, 72, 7682. https://doi.org/10.1016/j.fct.2014.06.021CrossRefGoogle ScholarPubMed
Sun, Z. M., Lian, C., Li, C. Q., & Zheng, S. L. (2020). Investigations on organo-montmorillonites modified by binary nonionic/zwitterionic surfactant mixtures for simultaneous adsorption of aflatoxin B1 and zearalenone. Journal of Colloid and Interface Science, 565, 1122. https://doi.org/10.1016/j.jcis.2020.01.013CrossRefGoogle ScholarPubMed
Sun, Z. M., Song, A. K., Wang, B., Wang, G. F., & Zheng, S. L. (2018). Adsorption behaviors of aflatoxin B1 and zearalenone by organo-rectorite modified with quaternary ammonium salts. Journal of Molecular Liquids, 264, 645651. https://doi.org/10.1016/j.molliq.2018.05.091CrossRefGoogle Scholar
Teresa Garcia, M., Kaczerewska, O., Ribosa, I., Brycki, B., Materna, P., & Drgas, M. (2016). Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties. Chemosphere, 154, 155160. https://doi.org/10.1016/j.chemosphere.2016.03.109CrossRefGoogle ScholarPubMed
Tian, G. Y., Wang, W. W., Zong, L., Kang, Y. R., & Wang, A. Q. (2016). A functionalized hybrid silicate adsorbent derived from naturally abundant low-grade palygorskite clay for highly efficient removal of hazardous antibiotics. Chemical Engineering Journal, 293, 376385. https://doi.org/10.1016/j.cej.2016.02.035CrossRefGoogle Scholar
Wang, J. H., Liu, S. C., Tang, W., & Ma, H. R. (2015). Enhanced removal of humic acid from aqueous solution by adsorption on surfactant-modified palygorskite. Journal of Chemical Engineering of Japan, 48(12), 953959. https://doi.org/10.1252/jcej.14we436CrossRefGoogle Scholar
Wang, T. T., Chen, Y. H., Ma, J. F., Jin, Z. F., Chai, M. S., Xia, X. W., Zhang, L. H., & Zhang, Y. K. (2018). A polyethyleneimine-modified attapulgite as a novel solid support in matrix solid-phase dispersion for the extraction of cadmium traces in seafood products. Talanta: The International Journal of Pure and Applied Analytical Chemistry, 180, 254259. https://doi.org/10.1016/j.talanta.2017.12.059CrossRefGoogle ScholarPubMed
Wu, F. Y., Cui, J., Yang, X. Y., Liu, S. D., Han, S. J., & Chen, B. J. (2021a). Effects of zearalenone on genital organ development, serum immunoglobulin, antioxidant capacity, sex hormones and liver function of prepubertal gilts. Toxicon, 189, 3944. https://doi.org/10.1016/j.toxicon.2020.11.005CrossRefGoogle ScholarPubMed
Wu, N., Ou, W., Zhang, Z. D., Wang, Y. W., Xu, Q., & Huang, H. (2021b). Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chinese Journal of Chemical Engineering, 30, 168177. https://doi.org/10.1016/j.cjche.2020.11.011CrossRefGoogle Scholar
Wang, Y. L., Zhou, X. Q., Jiang, W. W., Wu, P., Liu, Y., Jiang, J., Wang, S. W., Kuang, S. Y., Tang, L., & Feng, L. (2019). Effects of dietary Zearalenone on oxidative stress, cell apoptosis, and tight junction in the intestine of juvenile grass carp (Ctenopharyngodon idella). Toxins, 11(6), 333. https://doi.org/10.3390/toxins11060333CrossRefGoogle ScholarPubMed
Xu, Y., Ma, B., Chen, E. J., Yu, X. P., Ye, Z. H., Sun, C. X., & Zhang, M. Z. (2021). Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chemistry, 336, 127713. https://doi.org/10.1016/j.foodchem.2020.127713CrossRefGoogle ScholarPubMed
Yang, R., Li, D. W., Li, A. M., & Yang, H. (2018). Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 151, 2028. https://doi.org/10.1016/j.clay.2017.10.016CrossRefGoogle Scholar
Youcef, L. D., Belaroui, L. S., & López-Galindo, A. (2019). Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Applied Clay Science, 179, 105145. https://doi.org/10.1016/j.clay.2017.10.016CrossRefGoogle Scholar
Zhang, W., Zhang, S. H., Wang, J. J., Dong, J. W., Cheng, B. J., Xu, L., & Shan, A. S. (2019). A novel adsorbent albite modified with cetylpyridinium chloride for efficient removal of zearalenone. Toxins, 11, 674. https://doi.org/10.3390/toxins11110674CrossRefGoogle ScholarPubMed
Zhang, W., Zhang, L. Y., Jiang, X., Liu, X., Li, Y., & Zhang, Y. G. (2020a). Enhanced adsorption removal of aflatoxin B1, zearalenone and deoxynivalenol from dairy cow rumen fluid by modified nano-montmorillonite and evaluation of its mechanism. Animal Feed Science and Technology, 259, 114366. https://doi.org/10.1016/j.anifeedsci.2019.114366CrossRefGoogle Scholar
Zhang, Y. Y., Gao, R., Liu, M., Shi, B. M., Shan, A. S., & Cheng, B. J. (2015). Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development. Theriogenology, 83(5), 932941. https://doi.org/10.1016/j.theriogenology.2014.11.027CrossRefGoogle ScholarPubMed
Zhang, Y., He, J., Song, L., Wang, H., Huang, Z., Sun, Q., & Zhang, S. (2020b). Application of surface-imprinted polymers supported by hydroxyapatite in the extraction of zearalenone in various cereals. Analytical and Bioanalytical Chemistry, 412(17), 40454055. https://doi.org/10.1007/s00216-020-02610-yCrossRefGoogle ScholarPubMed
Zhong, H. Q., Mu, B., Zhang, M. M., Hui, A. P., Kang, Y. R., & Wang, A. Q. (2020). Preparation of effective carvacrol/attapulgite hybrid antibacterial materials by mechanical milling. Journal of Porous Materials, 27(3), 843853. https://doi.org/10.1007/s10934-020-00863-7CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Jaber, M., Gao, J. H., & Peng, S. M. (2017). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248257. https://doi.org/10.1016/j.jiec.2017.07.017CrossRefGoogle Scholar
Zuo, R., Meng, L., Guan, X., Wang, J. S., Yang, J., & Lin, Y. H. (2019). Removal of strontium from aqueous solutions by acrylamide-modified attapulgite. Journal of Radioanalytical and Nuclear Chemistry, 319(3), 12071217. https://doi.org/10.1007/s10967-019-06414-yCrossRefGoogle Scholar
Supplementary material: File

Kang et al. supplementary material
Download undefined(File)
File 22.9 KB