Hostname: page-component-76dd75c94c-68sx7 Total loading time: 0 Render date: 2024-04-30T07:15:56.673Z Has data issue: false hasContentIssue false

Quantitative Determination of Aluminum-Substituted Goethite-Hematite Mixtures By Mössbauer Spectroscopy

Published online by Cambridge University Press:  02 April 2024

D. D. Amarasiriwardena
Affiliation:
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
E. DeGrave*
Affiliation:
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
L. H. Bowen*
Affiliation:
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
S. B. Weed
Affiliation:
Department of Soil Science, North Carolina State University, Raleigh, North Carolina 27695
*
1Permanent address: Laboratory for Magnetism, Proeftuinstraat 86, B-9000 Gent, Belgium.
2To whom reprint requests should be sent.

Abstract

Mixtures of synthetic Al-substituted goethite (α-Fe0.814Al0.186OOH) and hematite (α-Fe1.658Al0.342O3) (75, 50, 25, 3% hematite by weight) were studied by Mössbauer spectroscopy to evaluate the use of that technique for quantitative analysis. Mössbauer spectra for these mixtures, obtained in the temperature range 12–130 K, were better fitted by a distribution of magnetic fields than by two magnetic sextets. Spectra at 80 K were equally as good as those from lower temperature to determine the hematitegoethite ratio. The recoil-free fractions of the individual components were about equal at any fixed temperature, but thickness effects caused as much as 30% error in the determination of the ratio of components in mixtures.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bigham, J. M., Golden, D. C., Bowen, L. H., Buol, S. W. and Weed, S. B., 1978 Iron oxide mineralogy of well-drained ultisols and oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray diffractometry and selected chemical techniques Soil Sci. Soc. Amer. J. 42 816825.CrossRefGoogle Scholar
Bowen, L. H., Weed, S. B., Stevens, J. G. and Shenoy, G. K., 1981 Mössbauer spectroscopic analysis of iron oxides in soils Mössbauer Spectroscopy and its Chemical Application Washington, D.G American Chemical Soc 247261.CrossRefGoogle Scholar
Childs, G. W., Goodman, B. A., Churchman, G. J., Mortland, M. M. and Farmer, V. G., 1979 Application of Mössbauer spectroscopy to the study of iron oxides in some red and yellow/brown soil samples from New Zealand Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 555565.Google Scholar
DeGrave, E., Bowen, L. H. and Weed, S. B., 1982 Mössbauer study of aluminum-substituted hematites J. Magn. Magn. Mat. 27 98108.CrossRefGoogle Scholar
DeGrave, E., Bowen, L. H. and Hedges, S. W., 1982 Mössbauer spectroscopy with a microprocessor: a versatile software package Nucl. Inst. Methods 200 303310.CrossRefGoogle Scholar
Forsyth, J. B., Hedley, I. G. and Johnson, G. E., 1968 The magnetic structure and hyperfine field of goethite (μ-FeOOH) J. Phys. C 1 179188.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous goethite: a Mössbauer study Phys. Chem. Minerals 8 180187.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous hematite: a Mössbauer study Phys. Chem. Minerals 8 257267.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1984 On Mössbauer analysis of mineral mixtures having environmentally broadened spectral lines Phys. Stat. Sol. 84 3138.CrossRefGoogle Scholar
Golden, D. G., 1978 Physical and chemical properties of aluminum-substituted goethite North Carolina Ph.D. thesis, North Carolina State University, Raleigh.Google Scholar
Golden, D. G., Bowen, L. H., Weed, S. B. and Bigham, J. M., 1979 Mössbauer studies of synthetic and soil-oc-curring aluminum-substituted goethites Soil Sci. Soc. Amer. J. 43 802808.CrossRefGoogle Scholar
Goodman, B. A., Stucki, J. W. and Banwart, W. L., 1980 Mössbauer spectroscopy Advanced Chemical Methods for Soil and Clay Minerals Research Dordrecht D. Reidel 192.Google Scholar
Heberle, J. and Gruverman, I. J., 1971 The Debye integrals, the thermal shift and the Mössbauer fraction Mössbauer Effect Methodology, Vol. 7 New York Plenum Press 299308.CrossRefGoogle Scholar
Ibanga, I. J., Buol, S. W., Weed, S. B. and Bowen, L. H., 1983 Iron oxides in petroferric materials Soil Sci. Soc. Amer. J. 47 12401246.CrossRefGoogle Scholar
Kodama, H., McKeague, J. A., Tromblay, R. J., Gosselin, J. R. and Townsend, M. G., 1977 Characterization of iron oxide compounds in soil by Mössbauer and other methods Can. J. Earth Sci. 14 115.CrossRefGoogle Scholar
Kundig, W., Bommel, H., Constabaris, G. and Lindquist, R. H., 1966 Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect Phys. Rev. 142 327333.CrossRefGoogle Scholar
Lang, G., 1963 Interpretation of experimental Mössbauer spectrum areas Nucl. Instr. Meth. 24 425428.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1983 The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite Clay Miner. 18 301312.CrossRefGoogle Scholar
Norrish, K. and Taylor, R. M., 1961 The isomorphous replacement of iron by aluminum in soil goethites J. Soil Sci. 12 294306.CrossRefGoogle Scholar
Schwertmann, L. T., Fitzpatrick, R. W. and Le Roux, J., 1977 Al substitution and differential disorder in soil hematites Clays & Clay Minerals 25 373374.CrossRefGoogle Scholar
Schwertmann, U., Murad, E. and Schulze, D. G., 1982 Is there holocene reddening (hematite formation) in soils of axeric temperature areas? Geoderma 27 209223.CrossRefGoogle Scholar
Wivel, G. O. and Merup, S., 1981 Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra J. Phys. E 14 605610.CrossRefGoogle Scholar