Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T16:03:22.270Z Has data issue: false hasContentIssue false

Reassessment of the Volkonskoite-Chromian Smectite Nomenclature Problem

Published online by Cambridge University Press:  02 April 2024

Eugene E. Foord
Affiliation:
U.S. Geological Survey, Federal Center, Denver, Colorado 80225
Harry C. Starkey
Affiliation:
U.S. Geological Survey, Federal Center, Denver, Colorado 80225
Joseph E. Taggart Jr.
Affiliation:
U.S. Geological Survey, Federal Center, Denver, Colorado 80225
Daniel R. Shawe
Affiliation:
U.S. Geological Survey, Federal Center, Denver, Colorado 80225

Abstract

The name volkonskoite was first used in 1830 to describe a bright blue-green, chromiumbearing clay material from the Okhansk region, west of the Ural Mountains, U.S.S.R. Since that time, the name has been applied to numerous members of the smectite group of clay minerals, although the reported chromium content has ranged from 1% to about 30% Cr2O3. The name has also been applied to some chromian chlorites. Because volkonskoite has been used for materials that differ not only in their chromium content but also in their basic structure, the species status of the mineral has been unclear.

To resolve this uncertainty, two specimens of volkonskoite from (1) Mount Efimiatsk, the type locality in the Soviet Union (USNM 16308) and (2) the Okhansk region in the Perm Basin, U.S.S.R. (USNM R4820), were examined by several mineralogical techniques. Neotype sample 16308 has the following structural formula:

(Ca0.11Mg0.11Fe2+ 0.03K0.02)(Cr1.18Mg0.78Fe3+ 0.29Ca0.02)(Si3.50Al0.51)O10(OH)2⋅3.64H2O.

Sample R4820 has the following structural formula:

(Ca0.25Mg0.05Fe2+ 0.01K0.03Mn0.01)(Cr1.07Mg0.75Fe3+ 0.35(Si3.59Al0.43)O10(OH)2⋅4.22H2O.

Mössbauer spectroscopy indicates that 91% and 98% of the iron is present as Fe3+ in samples 16308 and R4820, respectively. X-ray powder diffraction patterns of both samples have broad lines corresponding to minerals of the smectite group.

On the basis of these data, volkonskoite appears to be a dioctahedral member of the smectite group that contains chromium as the dominant cation in the octahedral layer. Smectites containing less than this amount of octahedral chromium should not be called volkonskoite, but should be named by chemical element adjectives, e.g., chromian montmorillonite, chromian nontronite.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, V. V., Ignat’ev, N. A. and Kobyak, G. G., 1940 Volkonskoite of the Kama region Ucheniye Zapiski Molotovskogo Gosudarstvennogo Universiteta imeni A. M. Gor’kogo 4 577 (in Russian).Google Scholar
Anderson, S. M., 1975 Additions to the “check list of the minerals of Rhodesia” Annals Rhodesia Geol. Surv. 1 6264.Google Scholar
Andritzsky, G., 1963 Ein Vorkommen von Wolkonskoit in einer verquartzen tektonischen Brekzie bei Kum (Vord. Bayer. Wald) Geol. Blat. Nordost-Bayern Angrenz. Gebiete 13 186191.Google Scholar
Angel, F., 1913 Über Wolkonskoit Z. Frist. Mineral. 52 568579.Google Scholar
Bayliss, P., 1975 Nomenclature of the trioctahedral chlorites Can. Mineral. 13 178180.Google Scholar
Bentor, Y. K. and Gross, S., 1966 The volkhonskoite occurrences in the “mottled zone” of Hatrurim, northern Negev (Israel): Reprint from Research Rep. 1965–1966, Hebr. Univ. Jerusalem .Google Scholar
Besnus, Y., Fusil, G., Janot, C., Pinta, M., Sieffermann, G. and Bailey, S. W., 1975 Characteristics of some weathering products of chromitic ultrabasic rocks in Bahia state, Brazil: Nontronites, chlorites and chromiferous talcProc. Int. Clay Conf, Mexico City, 1975 IllinoisApplied Publishing, Wilmette 2734.Google Scholar
Boldyrev, A. I. and Mikeev, E. K., 1966 Minerals in soils and their determination by infrared spectroscopy Voprosi Mineralogii Osadochnykh Obrazovanii 7 4855 (in Russian).Google Scholar
Borisenko, E. N. and Borisenko, L. F., 1962 Volkonskoite from the Kama area redbeds Akad. Nauk S.S.S.R., Trud. Mineral. Muzeya A. E. Fersmana 13 153160 (in Russian).Google Scholar
Botinelly, T. (1960) Mineralogy: in Vanadium-uranium Deposits of the Rifle Creek Area, Garfield County, Colorado, Fischer, R. P., ed., U.S. Geol. Surv. Bull. 1101, 52 pp.Google Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structuresCrystal Structures of Clay Minerals and their X-ray Identification LondonMineralogical Society 178179.CrossRefGoogle Scholar
Bush, A. L., Bromfield, C. S. and Pierson, C.T., 1959 Areal geology of the Placerville quadrangle, San Miguel County, Colorado U.S. Geol. Surv. Bull. 1072 299384.Google Scholar
Cadigan, R. E., 1972 Geochemical anomalies and alteration in the Moenkopi Formation, Skull Creek, Moffat County, Colorado U.S. Geol. Surv. Prof. Pap. 761 .CrossRefGoogle Scholar
Davydov, A. T. and Rechina, E Sh, 1953 On the question of production of artificial volkonskoite Trud. Nauch. tested. Inst. Khimi Karkov. Gos. Univ. A. M. Gor’kogo 10 211215 (in Russian).Google Scholar
Dimitrov, S., 1942 Chrome-bearing clay and nickel-as-bolan from Nevrokop Godishnik na Sofiiskiya Univ. Fiziko-Matemat. Fakul., Kniga 3 (Yestestvena istoriya) 38 207226 (in Bulgarian).Google Scholar
Entsov, G. I., Ignatev, N. A. and Starkov, N. P., 1952 On the geologic and petrographic characteristics of the Kama area volkonskoite deposits Zap. Vses. Miner. Obshch. 81 179184 (in Russian).Google Scholar
Fleischer, M., 1983 Glossary of Mineral Species ArizonaMineralogical Record, Tucson.Google Scholar
Geological Society of America, 1963 Rock-color Chart New YorkGeol. Soc. America.Google Scholar
Gross, S., 1977 The mineralogy of the Hatrurim Formation, Israel Geol. Surv. Israel Bull. 70 180.Google Scholar
Gross, S., Mazor, E., Sass, E. and Zak, I., 1967 The Mottled Zone complex of Nahal Ayalon (central Israel) Israel J. Earth Sci. 16 8496.Google Scholar
Gudoshnikov, V. V., Ignat’ev, N. A. and Kiselev, G. N., 1968 Volkonskoite and chromian allophanoids in Jurassic formations of the Akkerman area Ucheniye zapiski Permskogo Ordena Trud. Krasnogo Znameni Gosudarstvennogo Univ. imeni A. M. Gor’kogo, Geol. Petrograf. zapadnogo Urala 4 4762 (in Russian).Google Scholar
Harder, H., 1978 Synthesen von Tonmineralen unter spezieller Berücksichtigung festländischer Bedingungen Schriftenr. Geol. Wissen. 11 5178.Google Scholar
Hawley, C. C., Wyant, D. G. and Brooks, D. B. (1965) Geology and uranium deposits of the Temple Mountain district, Emery County, Utah: U.S. Geol. Surv. Bull. 1192, 154 pp.Google Scholar
Heinbach, W. and Rosch, H., 1982 Zum Vorkommen von Wolchonskoit, einem Cr-Montmorillonit, aus dem Hangenden der “Mottled Zone” Zentraljordaniens Geol. Jahrb., Reihe B 45 2130.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Minerals 7 223238.CrossRefGoogle Scholar
Ilimov, I., 1842 Analysis of volkonskoite Gorny Zh„ 479 (in Russian).Google Scholar
Ivanov, P., 1851 Account of work of the laboratory of the Department of mining and milling science for the year 1850 Gorny Zh. 23 (in Russian).Google Scholar
Ivanova, V. P., 1937 Physico-chemical investigation of volkonskoite (preliminary communication) Trud. Vtorogo Sov. Eksper. Min. Petr. 6577 (in Russian).Google Scholar
Ivanova, V. P., 1961 Thermograms of minerals Zap. Vses. Min. Obshch. 90 5090 (in Russian).Google Scholar
Kämmerer, A., 1831 Auszuge aus Briefen. Mittheilungen an den Geheimen Rath v. Leonhard gerichtet Jahrb. Mineral. Geognosie, Geol. Petrefaktenkunde. Heidelberg 2 420.Google Scholar
Kersten, C., 1839 Chemische Untersuchung des Wolchonskoits Ann. Physik Chemie 47 489493.CrossRefGoogle Scholar
Khoury, H. N., Mackenzie, R. C., Russell, J. D. and Tait, J. M., 1984 An iron-free volkonskoite Clay Miner. 19 4357.CrossRefGoogle Scholar
Kokscharov, N., 1853 XIII. WolkonskoitMaterialien zur Mineralogie Russlands St. PetersburgCarl Kray 140146.Google Scholar
Krotov, P., 1902 Volkonskoite from Uchtym, Vyatska government Vreh. Russ. Kais. Miner. Gesellsch. 40 111 (in Russian).Google Scholar
Kryzhanovski, V. I. and Pustavalov, L. V., 1928 Deposits of volkonskoite of the Vyatka and Perm governments Volkonskoite 4853 (in Russian).Google Scholar
Kultyshev, N. P., 1938 New deposits of volkonskoite in Udmurtia Uchenye zapiski Kazanskogo Gosudarstvenogo Univ. 98 89104 (in Russian).Google Scholar
Mackenzie, R. C., 1984 Discovery of volkonskoite Mineral. Mag. 48 297298.CrossRefGoogle Scholar
Mackenzie, R. C., 1984 Constitution of and relationships among volkonskoites Clay Miner. 19 669671.CrossRefGoogle Scholar
Mackenzie, R. C., 1985 Zap. Vses. Min. Obshch. 114 konskoitefromtheKamaregionandJordan219221 (in Russian).Google Scholar
Maksimovic, Z. and Krstanovic, I., 1969 Chrome smectite (volkonskoite) from Rastiste near Studenica Monastery Zap. Srpskog Geol. Drus. (1964-1967) 823826 (in Serbian).Google Scholar
McConnell, D., 1954 An American occurrence of volkonskoite Clays and Clay Minerals, Proc. 2nd Natl. Conf, Columbia, Missouri, 1953 327 152157.Google Scholar
Nüssen, B. and Raade, G., 1973 On chromian montmorillonite (volkonskoite) in Norway Norsk Geol. Tids. 53 329331.Google Scholar
Page, B. M. (1959) Geology of the Candelaria mining district, Mineral County, Nevada: Nev. Bur. Mines Bull. 56, 67 pp.Google Scholar
Petzold, A., 1972 Beiträge zur Kenntnis des Saureangriffs auf Tonminerale und tonige Mineralgemische. V. Saureangriff auf Minerale und Mineralgemische der Montmorillonit-Gruppe Wiss. Z. Hochschule Architek. Bauwesen Weimar 3 309314.Google Scholar
Pustovalov, L. V. (1928) Volkonskoite: Trud. Inst. Priklad. Mineral, i Metall., No. 36, Moscow, 60 pp. (in Russian).Google Scholar
Ross, C. S. and Swineford, A., 1960 Review of the relationships in the montmorillonite group of clay mineralsClays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958 New YorkPergamon Press 225229.Google Scholar
Ross, C. S. and Hendricks, S. B. (1945) Minerals of the montmorillonite group, their origin and relation to soils and clays: U.S. Geol. Surv. Prof. Pap. 205–B, 77 pp.Google Scholar
Sanyal, P., Siffert, B. and Wey, R., 1969 Sur la formation d’argiles chromifères Groupe Franç. Argiles 21 89113.CrossRefGoogle Scholar
Sartori, F., 1967 La wolchonskoite di Castiglioncello (Livorno) Periodico Min. Roma 36 103124.Google Scholar
Serdiuchenko, D. P., 1933 Chrome nontronites and their genetic significance to the serpentines of the northern Caucasus Zap. Vses. Mineral. Obshch. 62 376391 (in Russian).Google Scholar
Serdyuchenko, D. P., 1952 Weathering rind minerals in serpentine of the Malka river Izdat. Akad. Nauk S.S.S.R. 1 2363 (in Russian).Google Scholar
Starkey, H. C., Blackmon, P. D. and Hauff, P. L. (1984) The routine mineralogical analyses of clay-bearing samples: U.S. Geol. Surv. Bull. 1563, 32 pp.Google Scholar
Taggart, J. E. and Wahlberg, J. S., 1980 New mold design for casting fused samples Adv. in X-ray Analysis 23 257261.Google Scholar
Taggart, J. E. and Wahlberg, J. S., 1980 A new in-muffle automatic fluxer design for casting glass discs for X-ray fluorescence analysis Proc. Fed. Anal. Chemists and Spec. Soc. Meeting, Philadelphia, Penna. September, 1980 .Google Scholar
Taggart, J.E.Lichte, F.E. and Wahlberg, J.S., 1981 Methods of analysis of samples using X-ray fluorescence and induction-coupled plasma spectroscopy U.S. Geol. Surv. Prof. Pap. 1250 683687.Google Scholar
Weiss, A., Koch, G. and Hofmann, U., 1954 Zur Kenntnis Wolchonskoit Ber. Deutsch. Keram. Gesell. 31 301305.Google Scholar