Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T12:05:48.470Z Has data issue: false hasContentIssue false

Reduction and Sorption of Chromium by Fe(II)-Bearing Phyllosilicates: Chemical Treatments and X-Ray Absorption Spectroscopy (XAS) Studies

Published online by Cambridge University Press:  28 February 2024

Maria Franca Brigatti
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, via S. Eufemia 19, 41100 Modena, Italy
Cristina Lugli
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, via S. Eufemia 19, 41100 Modena, Italy
Giannantonio Cibin
Affiliation:
I.N.F.N., Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy
Augusto Marcelli
Affiliation:
I.N.F.N., Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy
Gabriele Giuli
Affiliation:
Dipartimento di Scienze della Terra, Università di Camerino, Via Gentile III da Varano, I-62032 Camerino, MC, Italy
Eleonora Paris
Affiliation:
Dipartimento di Scienze della Terra, Università di Camerino, Via Gentile III da Varano, I-62032 Camerino, MC, Italy
Annibale Mottana
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma 3, Largo S. Leonardo Murialdo, 1, I-00146 Roma, Italy
Ziyu Wu
Affiliation:
Centre de Recherche sur la Synthèse et la Chimie des Mineraux, C.N.R.S., 1A rue de la Férollerie, F-45071, Orléans Cedex 2, France

Abstract

The reduction of hexavalent chromium species in aqueous solutions by interaction with Fe(II)-bearing solid surfaces was studied using a 0.96 × l0−3 M Cr(VI) solution and iron-rich clays with different Fe(II)/Fe(III) ratios, layer charge, and exchange properties, i.e., chlorite, corrensite, and montmorillonite. Experimental studies demonstrated that Fe(II)-bearing phyllosilicates reduce aqueous Cr(VI) ions at acidic pH. Chlorite and corrensite, owing to the high Fe(II)/Fe(III) ratio, are electrochemically reactive, as rapid Cr(VI) reduction indicated. In contrast, montmorillonite showed minimum to nil reactivity towards Cr(VI). Furthermore, corrensite, which is high in both Fe(II)/Fe(III) ratio and exchange capacity, adsorbs the greatest amount of chromium.

X-ray absorption spectroscopy at Al, Mg, Fe, and Cr K-edges was used to investigate the adsorbed chromium species. The montmorillonite sample, unaffected by treatment with Cr(VI) solution, displays no change at any investigated edge. Edge shape and energy also do not change for the Mg and Al spectra in corrensite, and changes are minor in chlorite. By contrast, the Fe K-edge changes both in chlorite and corrensite, and indicates an increase of Fe(III) in treated samples at the expense of pre-existing Fe(II). Cr K-edge spectra show that chlorite and corrensite sorb Cr(III), which implies its reduction from Cr(VI) in the interacting solution.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrhein, C. and Suarez, D.L., 1991 Sodium-calcium exchange with anions exclusion and weathering corrections Soil Science Society of America Journal 55 698706 10.2136/sssaj1991.03615995005500030010x.CrossRefGoogle Scholar
Anderson, R.A., Mertz, W. Abernathy, C.O. and Olin, S.S., 1994 Nutritional and toxicological aspects of chromium intake: An overview Risk Assessment of Essential Elements Washington, D.C. ILSI Press 187196.Google Scholar
APHA, AWWA, WPC, 1989 Standard Methods for Examination of Water and Wastewaters 17th edition. Washington D.C. American Public Health Association 201204.Google Scholar
Arcon, I. Mirtic, B. and Kodre, A., 1998 Determination of valence states of chromium in calcium chromate by using X-ray adsorption near edge structure (XANES) spectroscopy Journal of American Ceramic Society 81 222224 10.1111/j.1151-2916.1998.tb02319.x.CrossRefGoogle Scholar
Bajt, S. Clark, S.B. Sutton, S.R. Rivers, M.L. and Smith, J.V., 1993 Synchrotron X-ray microprobe determination of chromate content using X-ray absorption near edge structure Analytical Chemistry 65 18001804 10.1021/ac00061a026.CrossRefGoogle Scholar
Bergaya, F. and Vayer, M., 1997 CEC of clays: Measurement by adsorption of a copper ethylenediamine complex Applied Clay Science 12 275280 10.1016/S0169-1317(97)00012-4.CrossRefGoogle Scholar
Bianconi, A., Konigsberger, D.C. and Prins, R., 1988 XANES Spectroscopy X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEX-AFS and XANES New York Wiley 573662.Google Scholar
Bianconi, A. Garcia, I. Benfatto, M. Marcelli, A. Natoli, C.R. and Ruiz-Lopez, M.E., 1992 Multielectron excitation in the K-edge X-ray absorption near edge spectra of V, Cr, and Mn 3d° compounds with tetrahedral coordination Physical Review B: Condensed Matter 13 68856892.Google Scholar
Bonnin, D. Calas, G. Suquet, H. and Pezerat, H., 1985 Site occupancy of Fe3+ in Garfield nontronite: A spectroscopic study Physics and Chemistry of Minerals 12 5564.CrossRefGoogle Scholar
Calas, G. Levitz, P. Petian, J. Bondot, E. and Loupias, G., 1980 Etude de l’ordre local autour du fer des verres silicates naturales et synthetiques a l’aide de la spectrometrie d’absorption X Review Physical Application 15 11611167 10.1051/rphysap:019800015060116100.CrossRefGoogle Scholar
Chaboy, J. Garcia, M.L. Bartolome, F. Marcelli, A. Cibin, G. Maruyama, H. Pizzini, S. Rogalev, A. Goedkoop, J.B. and Goulon, J., 1998 X-ray magnetic-circular-dichroism probe of a noncollinear magnetic arrangement below the spin reorientation transition in Nd2Fe14B Physical Review B: Condensed Matter 57 84248429 10.1103/PhysRevB.57.8424.CrossRefGoogle Scholar
Charlet, L. and Manceau, A., 1992 X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface Journal of Colloid Interface Science 148 443458 10.1016/0021-9797(92)90182-L.CrossRefGoogle Scholar
Deng, B.L. and Stone, A.T., 1996 Surface catalyzed chromium (VI) reduction—the TiO2-Cr(VI) mandelic acid system Environmental Science and Technology 30 463472 10.1021/es950156c.CrossRefGoogle Scholar
Drager, G. Frahm, R. Materlik, G. and Briimmer, O., 1988 On the multiple character of the X-ray transition in the preedge structure of Fe K absorption spectra. An experimental study Physica Status Solidi (B) 149 287294 10.1002/pssb.2221460130.CrossRefGoogle Scholar
Eary, L.E. and Rai, D., 1988 Chromate removal from aqueous wastes by reduction with ferrous ions Environmental Science Technology 22 972977 10.1021/es00173a018.CrossRefGoogle Scholar
Eary, L.E. and Rai, D., 1991 Chromate reduction by subsurface soils under acidic conditions Journal of Sciences and Technology 22 972977 10.1021/es00173a018.Google Scholar
Felter, S.P. and Dourson, M.L., 1997 Hexavalent chromiumcontaminated soils: Option for risk assessment and risk management Regulatory Toxicology and Pharmacology 4359.CrossRefGoogle Scholar
Fendorf, S.E. and Li, G., 1996 Kinetics of chromate reduction by ferrous ions Environmental Science and Technology 30 16141617 10.1021/es950618m.CrossRefGoogle Scholar
Gan, H. Bailey, G.W. and Yu, S.Y., 1996 Morphology of lead(II) and chromium(III) reaction products on phyllosilicate surfaces as determined by atomic force microscopy Clays and Clay Minerals 44 734743 10.1346/CCMN.1996.0440603.CrossRefGoogle Scholar
Ilton, E.S. Veblen, D.R. Moses, C.O. and Raeburn, S.P., 1997 The catalitic effect of sodium and lithium ions on coupled sorption-reduction of chromate at the biotite edgefluid interface Geochimica et Cosmochimica Acta 61 35433563 10.1016/S0016-7037(97)00185-3.CrossRefGoogle Scholar
Kieber, R.J. and Helz, G.R., 1992 Indirect photoreduction of chromium (VI) Environmental Science and Technology 307312.CrossRefGoogle Scholar
Kostka, J.E. and Nealson, K.H., 1995 Dissolution and reduction of magnetite by bacteria Environmental Science and Technology 29 25352540 10.1021/es00010a012.CrossRefGoogle ScholarPubMed
Lytle, F.W. Greegor, R.B. Sandtrom, D.R. Marques, E.C. Wong, J. Spiro, C.L. Huffman, G.P. and Huggins, F.E., 1984 Measurement of soft X-ray absorption spectra with a fluorescence ion chamber detector Nuclear Instrument and Methods in Physical Research A226 542548 10.1016/0168-9002(84)90077-9.CrossRefGoogle Scholar
Meyrowitz, R., 1970 A semimicroprocedure for the determination of ferrous iron in non-refractory silicate minerals American Mineralogist 48 298310.Google Scholar
Munoz-Paez, A. Pappalardo, R.R. and Sanchez Marcos, E., 1995 Determination of the second hydration shell of Cr3+ and Zn2+ in aqueous solution by extended X-ray absorption fine structure Journal of the American Chemical Society 117 1171011720 10.1021/ja00152a012.CrossRefGoogle Scholar
Nriagu, J.O., Nriagu, J.O. and Nieboer, E., 1988 Production and use of chromium Chromium in the Natural and Human Environments New York Wiley 81104.Google Scholar
Paris, E. Mottana, A. and Mattias, P., 1991 Iron environment in a montmorillonite from Gola del Furlo (Marche, Italy). A synchrotron radiation XANES and a Mössbauer study Mineralogy and Petrology 45 105117 10.1007/BF01164598.CrossRefGoogle Scholar
Peterson, M.L. Brown, G.E. Parks, G.A. and Stein, C.L., 1997 Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results Geochimica et Cosmochimica Acta 61 33993412 10.1016/S0016-7037(97)00165-8.CrossRefGoogle Scholar
Sedlak, D.L. and Chan, P.G., 1997 Reduction of hexavalent chromium by ferrous iron Geochimica et Cosmochimica Acta 61 21852192 10.1016/S0016-7037(97)00077-X.CrossRefGoogle Scholar
Voelker, B.M. and Sedlak, D.L., 1995 Iron photoreduction by photoproduced superoxide in seawater Marine Chemistry 50 93102 10.1016/0304-4203(95)00029-Q.CrossRefGoogle Scholar
Waite, T.D. and Morel, F.M.M., 1988 Photoreductive dissolution of colloidal iron oxides in natural waters Environmental Science Technology 18 860868 10.1021/es00129a010.CrossRefGoogle Scholar
White, A.F. and Peterson, M.L., 1996 Reduction of aqueous transition metal species in the surfaces of Fe(II)-containing oxides Geochimica et Cosmochimica Acta 60 37993814 10.1016/0016-7037(96)00213-X.CrossRefGoogle Scholar
Wong, J. George, G.N. Pickering, I.J. Rek, Z.U. Rowen, M. Tanaka, T. Via, G.H. DeVries, B. Vaughan, D.E.W. and Brown, G.E. Jr., 1994 New opportunity in XAFS investigation in the 1–2 keV region Solid State Communications 92 559562 10.1016/0038-1098(94)00607-5.CrossRefGoogle Scholar
Wong, J. Tanaka, T. Rowen, M. Schafers, F. Muller, R.B. and Rez, Z.U., 1999 YB66—A new soft X-ray monochromator for synchrotron radiation. II. Characterization Journal of Synchrotron Radiation 6 10861095 10.1107/S0909049599009000.CrossRefGoogle Scholar
Zachara, J.M. Fredrickson, J.K. Li, S.M. Kennedy, D.W. Smith, S. and Gassman, P., 1998 Bacterial reduction of crystalline Fe3+ oxide in single phase suspensions and subsurfaces materials American Mineralogist 83 14261443 10.2138/am-1998-11-1232.CrossRefGoogle Scholar