Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T03:16:38.130Z Has data issue: false hasContentIssue false

Three Zones for Illite Formation During Burial Diagenesis and Metamorphism

Published online by Cambridge University Press:  28 February 2024

D. D. Eberl*
Affiliation:
U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303

Abstract

Reinterpretation of published data for shale cuttings from the Gulf of Mexico sedimentary basin identifies three reaction zones for illite formation with increasing depth for well CWRU6. In a shallow zone (1.85 to 3 km), non-expanding illite-like layers formed primarily by the coalescence of smectite 2:1 layers around interlayer K+. In a middle zone (3 to 4 km), illite crystals neoformed from solution as coarser K-bearing phases and smectite were dissolved by organic acids. In the deepest zone (>4 km), illite recrystallized as less stable illite crystals dissolved, and more stable illite crystals grew during mineral ripening. The progressive loss of radiogenic argon in the deepest zone yielded a constant apparent age for the clays with depth, an effect previously attributed to “punctuated diagenesis.” The above hypothesis for illite formation emphasizes the need to establish the zone (i.e., the reaction mechanism) from which shales were derived before making detailed geologic interpretations based on illite mineralogy.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J. H. and Peacor, D. R., 1985 Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays & Clay Minerals 33 228236 10.1346/CCMN.1985.0330309.CrossRefGoogle Scholar
Ahn, J. H. and Peacor, D. R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays & Clay Minerals 34 165179 10.1346/CCMN.1986.0340207.Google Scholar
Ahn, J. H., Peacor, D. R., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Transmission electron microscopic study of the diagenesis of kaolinite in Gulf Coast argillaceous sediments Proceedings of the International Clay Conference, Denver, 1985 Indiana The Clay Minerals Society, Bloomington 151157.Google Scholar
Ahn, J. H. and Peacor, D. R., 1989 Illite/smectite from Gulf Coast shales: A reappraisal of transmission electron microscope images Clays & Clay Minerals 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Altaner, S. P., Weiss, C. A. Jr. and Kirkpatrick, R. J., 1988 Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Amouric, M. and Olives, J., 1991 Illitization of smectite as seen by high-resolution transmission electron microscopy Eur. J. Mineral 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Anjos, S. M. C., 1986 Absence of clay diagenesis in Cretaceous-Tertiary marine shales, Campos basin, Brazil Clays & Clay Minerals 34 424434 10.1346/CCMN.1986.0340409.CrossRefGoogle Scholar
Aronson, J. L. and Hower, J., 1976 Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence Geol. Soc. Amer. Bull 87 738743 10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Baronnet, A., 1982 Ostwald ripening in solution. The case of calcite and mica Estudios Geol 38 185198.Google Scholar
Bell, T. E., 1986 Microstructure in mixed-layer illite/smectite and its relationship to the reaction of smectite to illite Clays & Clay Minerals 34 146154 10.1346/CCMN.1986.0340205.CrossRefGoogle Scholar
Bevan, J. and Savage, D., 1989 The effect of organic acids on the dissolution of K-feldspar under conditions relevant to burial diagenesis Mineral. Mag 53 415425 10.1180/minmag.1989.053.372.02.CrossRefGoogle Scholar
Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in the Wilcox sandstones of southwest Texas—Implications of smectite diagenesis on sandstone cementation J. Sediment. Petrol 49 5570.Google Scholar
Burst, J. F., 1959 Post diagenetic clay mineral-environmental relationships in the Gulf Coast Eocene Clays & Clay Minerals 6 327341 10.1346/CCMN.1957.0060124.CrossRefGoogle Scholar
Burtner, R. L. and Warner, M. A., 1986 Relationship between illite/smectite diagenesis and hydrocarbon generation in Lower Cretaceous Mowry and Skull Creek shales of the northern Rocky Mountain area Clays & Clay Minerals 34 390402 10.1346/CCMN.1986.0340406.CrossRefGoogle Scholar
Capuano, R. M., 1992 The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system Geochim. Cosmochim. Acta 56 25472554 10.1016/0016-7037(92)90208-Z.CrossRefGoogle Scholar
Carothers, W. W. and Kharaka, Y. K., 1978 Aliphatic acid anions in oil-field waters—implications for origin of natural gas Amer. Assoc. Petrol. Geol. Bull 62 24412453.Google Scholar
Drits, V. A., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Mixed-layer minerals: Diffraction methods and structural features Proc. Inter. Clay Conf., Denver, 1985 Indiana The Clay Minerals Society, Bloomington 3345.Google Scholar
de Dunoyer Segonzac, G., 1970 The transformation of clay minerals during diagenesis and low-grade metamorphism: A review Sedimentology 15 281346 10.1111/j.1365-3091.1970.tb02190.x.CrossRefGoogle Scholar
Eberl, D. D., 1984 Clay mineral formation and transfermation in rocks and soils Phil. Trans. Royal Soc. London A311 241257 10.1098/rsta.1984.0026.Google Scholar
Eberl, D. D. and Landa, E. R., 1985 Dissolution of alkaline earth sulfates in the presence of montmorillonite Water, Air, and Soil Pollution 25 207214 10.1007/BF00568389.CrossRefGoogle Scholar
Eberl, D. D. and Srodon, J., 1988 Ostwald ripening and interparticle diffraction effects for illite crystals Amer. Miner 73 13351345.Google Scholar
Eberl, D. D., Srodon, J. and Northrop, H. R., 1986 Potassium fixation in smectite by wetting and drying Geo-chemical Processes at Mineral Surfaces 323 296326 10.1021/bk-1987-0323.ch014.CrossRefGoogle Scholar
Eberl, D. D., Srodon, J., Kralik, M., Taylor, B. E. and Peterman, Z. E., 1990 Ostwald ripening of clays and meta-morphic minerals Science 248 474477 10.1126/science.248.4954.474.CrossRefGoogle Scholar
Elliott, W. C., Aronson, J. L., Matisoif, G. and Gautier, D. L., 1991 Kinetics of the smectite to illite transformation in the Denver basin: Clay mineral, K-Ar, and mathematical model results Amer. Assoc. Petrol. Geol. Bull 75 436462.Google Scholar
Francu, J., Rudinec, R. and Simanek, V., 1989 Hydrocarbon generation zone in the east Slovakian neogene basin: Model and geochemical evidence Geologicky Zbornik— Geologica Carpathica 40 355384.Google Scholar
Freed, R. L., 1981 Shale mineralogy and burial diagenesis of Frio and Vicksburg formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas Transactions Gulf Coast Association of Geological Societies 31 289293.Google Scholar
Freed, R. L. and Peacor, D. R., 1989 Variability in temperature of the smectite/illite reaction in Gulf Coast sediments Clay Miner 24 171180 10.1180/claymin.1989.024.2.05.CrossRefGoogle Scholar
Freed, R. L. and Peacor, D. R., 1992 Diagenesis and the formation of illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates J. Sediment. Petrol 62 220234.Google Scholar
Glasmann, J. R., Larter, S., Briedis, N. A. and Lundegard, P. D., 1989 Shale diagenesis in the Bergen High area, North Sea Clays & Clay Minerals 37 97112 10.1346/CCMN.1989.0370201.CrossRefGoogle Scholar
Heller-Kallai, L., Miloslavski, I. and Aizenshtat, Z., 1986 Dissolution of calcite by steam derived from clay minerals Naturwissenschaften 73 615616 10.1007/BF00368774.CrossRefGoogle Scholar
Heller-Kallai, L., Miloslavski, I. and Aizenshtat, Z., 1987 Volatile products of clay mineral pyrolysis revealed by their effect on calcite Clay Miner 22 339348 10.1180/claymin.1987.022.3.08.CrossRefGoogle Scholar
Horton, R. B., Johns, W. D. and Kurzweil, H., 1985 Illite diagenesis in the Vienna Basin, Austria Tschermaks Min. Petr. Mitt 34 239260 10.1007/BF01082964.CrossRefGoogle Scholar
Hower, J. and Longstaffe, F. J., 1981 Shale diagenesis Mineralogical Association of Canada Short Course in Clays and the Resource Geologist Toronto Mineralogical Association of Canada 6080.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Huang, W. H. and Keller, W. D., 1972 Geochemical mechanics for the dissolution, transport, and deposition of aluminum in the zone of weathering Amer. Mineral 55 6974.Google Scholar
Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. and Schwander, H., 1986 The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland Contrib. Mineral. Petrol 92 157180 10.1007/BF00375291.CrossRefGoogle Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite to illite conversion in a hydrothermal system Amer. Miner 73 13251334.Google Scholar
Jäger, E., Jäger, E. and Hunziker, J. C., 1979 Introduction to geochronology Lectures in Isotope Geology New York Springer-Verlag 112 10.1007/978-3-642-67161-6.CrossRefGoogle Scholar
Jennings, S. and Thompson, G. R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California J. Sediment. Petrol 56 8998.Google Scholar
Johns, W. D. and McKallip, T. E., 1989 Burial diagenesis and specific catalytic activity of illite-smectite clays from Vienna Basin, Austria Amer. Assoc. Petrol. Geol. Bull 73 472482.Google Scholar
Keller, W. D., 1986 Composition of condensates from heated clay minerals and shales Amer. Mineral 71 14201425.Google Scholar
Keller, W. D., Reynolds, R. C. and Inoue, A., 1986 Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy Clays & Clay Minerals 34 187197 10.1346/CCMN.1986.0340209.CrossRefGoogle Scholar
Kralik, M., Clauer, N., Holnsteiner, R., Huemer, H. and Kappel, F., 1992 Recurrent fault activity in the Grimsel Test Site (GTS, Switzerland): Revealed by Rb-Sr, K-Ar and tritium isotope techniques Journal Geological Society, London 149 293301 10.1144/gsjgs.149.2.0293.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I/S-to-illite reaction in the late stage diagenesis Am. J. Sci 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Lee, J. H., Ahn, J. H. and Peacor, D. R., 1985 Textures in layered silicates: Progressive changes through diagenesis and low-temperature metamorphism J. Sed. Petrol 55 532540.Google Scholar
Lindgreen, H., 1991 Elemental and structural changes in illite/smectite mixed-layer clay minerals during diagenesis in Kimmeridgian-Volgian(-Ryazanian) clays in the Central Trough, North Sea and the Norwegian-Danish Basin Bulletin of the Geological Society of Denmark 39 182.CrossRefGoogle Scholar
Lundegard, P. D. and Land, L. S., 1986 Carbon dioxide and organic acids: Their role in porosity enhancement and cementation, Paleogene of the Texas Gulf Coast Roles of Organic Matter in Sediment Diagenesis 38 129147 10.2110/pec.86.38.0129.CrossRefGoogle Scholar
McCarty, D. K. and Thompson, G. R., 1991 Burial diagenesis in two Montana Tertiary basins Clays & Clay Minerals 39 293305 10.1346/CCMN.1991.0390310.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., 1968 Surface acidity of smectites in relation to hydration, exchangeable cation, and structure Clays & Clay Minerals 16 393398 10.1346/CCMN.1968.0160508.CrossRefGoogle Scholar
Morton, J. P., 1985 Rb-Sr evidence for punctuated diagenesis in the Oligocene Frio Formation, Texas Gulf Coast Geol. Soc. Amer. Bull 96 114122 10.1130/0016-7606(1985)96<114:REFPID>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified clay as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle Scholar
Odin, G. S. and Odin, G. S., 1982 Effect of pressure and temperature on clay mineral potassium-argon ages Numerical Dating in Stratigraphy New York John Wiley & Sons Ltd. 307319.Google Scholar
Ohr, M., Halliday, A. N. and Peacor, D. R., 1991 Sr and Nd isotopic evidence for punctuated diagenesis, Texas Gulf Coast Earth and Planetary Sci. Lett 105 110126 10.1016/0012-821X(91)90124-Z.CrossRefGoogle Scholar
Perry, E. and Hower, J., 1970 Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177 10.1346/CCMN.1970.0180306.CrossRefGoogle Scholar
Pollastro, R. M., Nuccio, V. F. and Barker, C. E., 1990 The illite/smectite geothermometer-concepts, methodology, and application to basin history and hydrocarbon generation Applications of Thermal Maturity Studies to Energy Exploration 118.Google Scholar
Powers, M. C., 1959 Adjustment of clays to chemical change and the concept of the equivalence level Clays & Clay Minerals 6 309326 10.1346/CCMN.1957.0060123.CrossRefGoogle Scholar
Pye, K., Krinsley, D. H. and Burton, J. H., 1986 Diagenesis of US Gulf Coast Shales Nature 324 557559 10.1038/324557a0.CrossRefGoogle ScholarPubMed
Ramseyer, K. and Boles, J. R., 1986 Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California Clays & Clay Minerals 34 115124 10.1346/CCMN.1986.0340202.CrossRefGoogle Scholar
Shutov, V. D., Drits, V. A. and Sakharov, B. A., 1969 On the mechanism of a postsedimentary transformation of montmorillonite into hydromica Proc. Int. Clay Conf., Tokyo, 1969 1 523532.Google Scholar
Siskin, M. and Katritzky, A. R., 1991 Reactivity of organic compounds in hot water: Geochemical and technological implications Science 254 231237 10.1126/science.254.5029.231.CrossRefGoogle ScholarPubMed
Small, J. S., 1992 Clay precipitation from oxalate-bearing solutions Water-Rock Interaction 1 345348.Google Scholar
Small, J. S., Hamilton, D. L. and Habesch, S., 1992 Experimental simulation of clay precipitation within reservoir sandstones 2: Mechanism of illite formation and controls on morphology Jour. Sed. Petrol 62 520529 10.2110/jsr.62.520.CrossRefGoogle Scholar
Srodon, J., Elsass, F., McHardy, W. J. and Morgan, D. J., 1992 Chemistry of illite/smectite inferred from TEM measurements of fundamental particles Clay Miner 27 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Surdam, R. C., Crossey, L. J., Hagen, E. S. and Heasler, H. P., 1989 Organic-inorganic interactions and sandstone diagenesis Amer. Assoc. Petrol. Geol. Bull 73 123.Google Scholar
Velde, B. and Espitalié, J., 1989 Comparison of kerogen maturation and illite/smectite composition in diagenesis Jour. Petroleum Geology 12 103110 10.1111/j.1747-5457.1989.tb00223.x.CrossRefGoogle Scholar
Velde, B. and Vasseur, G., 1992 Estimation of the diage-netic smectite to illite transformation in time-temperature space Amer. Miner 77 967976.Google Scholar
Wallace, R. H., Kraemer, T. F., Taylor, R. E. and Wesselman, J. B., 1979 Assessment of geopressure-geothermal resources in the northern Gulf of Mexico basin Assessment of Geothermal Resources of the United States 790 132155.Google Scholar
Weaver, C. E., (1979) Office of Nuclear Waste and Isolation Technical Report 21, 176 p.Google Scholar
Weaver, C. E. and Wampler, J. M., 1970 K, Ar, illite burial Geol. Soc. Amer. Bull 81 34233430 10.1130/0016-7606(1970)81[3423:KAIB]2.0.CO;2.CrossRefGoogle Scholar
Weaver, C. E., and Beck, K. C., (1971) Clay water diagenesis during burial: How mud becomes gneiss: Geol. Soc. Amer. Special Paper 134, 96 pp.Google Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systematics Amer. Miner 73 7790.Google Scholar
Winkler, H. G. F., 1967 Petrogenesis of Metamorphic Rocks 2nd ed. New York Springer-Verlag 10.1007/978-3-662-00866-9.CrossRefGoogle Scholar
Yau, Y. C., Peacor, D. R. and McDowell, S. D., 1987 Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study J. Sediment. Petrol 57 335342.Google Scholar
Yau, Y. C., Peacor, D. R., Beane, R. E. and McDowell, S. D., 1988 Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California Clays & Clay Minerals 36 110 10.1346/CCMN.1988.0360101.Google Scholar
Yeh, H. W., 1980 D/H ratios and late-stage dehydration of shales during burial Geochim. Cosmochim. Acta 44 341352 10.1016/0016-7037(80)90142-8.CrossRefGoogle Scholar
Yeh, H. W. and Savin, S. M., 1977 Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence Geol. Soc. Amer. Bull 88 13211330 10.1130/0016-7606(1977)88<1321:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar