Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T09:44:24.524Z Has data issue: false hasContentIssue false

Cerebral Mechanisms in Obsessive-Compulsive Disorder

Published online by Cambridge University Press:  07 November 2014

Abstract

Brain lesions cause different level change in cerebral function. They may conflict with the existing antagonistic mechanisms between the dorsal and ventral brain. At a clinical level, a dorsal brain lesion may constitute praxis disorders, while a ventral lesion may represent preventive inhibition. Further instinctive symptoms originate in the cingulate gyrus and its connections with the thalamic peduncle. This area may be an importan obsessive-compulsive disorder (OCD) pathway, that is utilized therapeutically during neurosurgical interventions in OCD.

Type
Feature Articles
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

1.Broca, P. Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique et la soissure limbique dans la série des mammiferes. Rev Anthropol. (Paris). 1878;1:385498.Google Scholar
2.Spatz, H. Über die Bedeutung der basale Rinde. Z Neurol. 1937;158:208224.Google Scholar
3.Goldar, JC. Corteza cerebral y psiquiatría. Acta Psiquiatr Psicol Am Lot. 1991;37:8.Google Scholar
4.Goldar, JC, Hojas, D, Outes, M. Un modelo neurobiológico de la mente. Acta Psiquiatr Psicol Am Lat. 1993;39:3344.Google Scholar
5.Starkstein, S, Robinson, R. Mechanism of disinhibition after brain lesions. J Nerv Mental Dis. 1997;185:108114.Google Scholar
6.Broca, P. Remarques sur le siege de la faculté du language articulé, suivier d'une observation d'aphemie (perte de la parole). Bulletin Societe Anatomie. (Paris) 1861;6:330336.Google Scholar
7.Wernicke, C. Der aphasische Symptomcomplex. Eine psychologische Studie auf anatomischer Basis. Breslau: Cohn and Weigert; 1874.Google Scholar
8.Dejerine, J. Sur un cas de cecite verbale avec agraphie suive d'autopsie. Mémoires Societe Biologie. 1891;3:197201.Google Scholar
9.Liepmann, H. Das Krankheitsbild der Apraxia (motorische Asymbolic) auf Grund eines Falles von eiseitiger Apraxie. Monatssch Psich Neurol. 1900;15–44, 102–132, 182197.Google Scholar
10.Stamm, J. The function of the median cerebral cortex in maternal behavior of rats. J Comp Physiol Psychol. 1955;48:347356.CrossRefGoogle ScholarPubMed
11.Spencer, S, Spencer, D, Williamson, P, Mattsom, R. Sexual automations in complex partial seizures. Neurology. 1983;33:537–533.Google Scholar
12.Hirose, S. Clinical pictures and courses of four cases with limbic epilepsy: a special reference to their relationship to EEg pattern. In: Doane, BK, Livingstone, KE, eds. The Limbic System: Functional Organization and Clinical Disorders. New York, NY: Raven Press; 1986.Google Scholar
13.Baleydier, C, Maugiera, F. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain. 1980;103:525554.Google Scholar
14.Economic, C. Von Zellaubau der Grosshirnrinde des Menschen. Berlin, Germany: Springer; 1927.Google Scholar
15.Pandya, D, Kuypers, H. Cortico-cortical connections in the rhesus monkey. Brain Res. 1969;13:1336.Google Scholar
16.Morecraft, R, Van Hoesen, G. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J Comp Neurol. 1992;322:471489.Google Scholar
17.Morecraft, R, Van Hoesen, G. Frontal granular cortex input to the cingulate (M3), supplementary (M2), and primary (Ml) motor cortices in the rhesue monkey. J Comp Neurol. 1993;337:669688.Google Scholar
18.Ray, J, Price, J. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in kacaque monkeys. J Comp Neurol. 1993;337:131.Google Scholar
19.Flechsig, P. Anatomie des Menschlichen: Gehirns und Rückenmarks. Leipzig, Germany: Thieme; 1920.Google Scholar
20.Welt, L. Über Charakterveränderungen des menschen infolge von läsionen des stirnhirns. Deutches Archiv klin Med. 1888;42:339390.Google Scholar
21.Kleist, K. Bericht über die gehirnpathologie in ihrer bedeutung für neurologie und psychiatrie. Zeitsch ges Neurol Psychiat. 1937;158:159193.Google Scholar
22.Goldar, JC, Outes, D. FisiopatologÍa de la desinhibición instintiva. Acta Psiquiatr Psicol Am Lat. 1972;18:177185.Google Scholar
23.Goldar, JC. Cerebro Límbico y Psiquiatría. Buenos Aires, Argentina: Salerno; 1975.Google Scholar
24.Klüver, H, Buccy, P. Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychist. 1939;42:9791000.Google Scholar
25.Insel, T. Toward a neuroanatomy of obsessive-compulsive disorder. Arch Gen Psychiatry. 1992;49:739744.Google Scholar
26.Dart, R. The dual structure of the neopallium: its history and significance. J Anat. 1934;69:319.Google Scholar
27.Barbas, N, Pandya, D. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989;286:353375.Google Scholar