Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T23:04:31.714Z Has data issue: false hasContentIssue false

Consistency Via Type 2 Inequalities: A Generalization of Wu's Theorem

Published online by Cambridge University Press:  18 October 2010

Asad Zaman
Affiliation:
Columbia University

Abstract

Wu introduced a new technique for proving consistency of least-squares estimators in nonlinear regression. This paper extends his results in three directions. First, we consider the minimization of arbitrary functions (M-estimators instead of least squares). Second, we use an improved type 2 inequality. Third, an extension of Kronecker's lemma yields a more powerful result.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Andrews, D.W.K.Consistency in nonlinear econometric models: a generic uniform law of large numbers. Econometrica 55(6) (1987): 14611464.CrossRefGoogle Scholar
2.Araujo, A. & Giné, E.. The central limit theorem for real- and Banach-valued random variables. New York: Wiley, 1980.Google Scholar
3.Balet-Lawrence, S., Estimation of parameters in an implicit model by minimizing the sum of absolute value of order p. Ph.D. Thesis, North Carolina State University, Raleigh, NC, 1975.Google Scholar
4.Bierens, H.J.Robust methods and asymptotic theory in nonlinear econometrics. New York: Springer-Verlag, 1981.CrossRefGoogle Scholar
5.Burguette, J.F., Gallant, A.R., & Souza, G.. On the unification of the asymptotic theory of nonlinear econometric models. Econometric Reviews 1(2) (1982): 151190.CrossRefGoogle Scholar
6.Chung, K.L.A course in probability theory, 2nd Ed. New York: Academic Press, 1974.Google Scholar
7.Grossman, W., Robust nonlinear regression. (Gordesch, J. & Naeve, P., eds.) Compstat 1976, Proceedings in Computational Statistics. Austria: Physica-Verlag, Wein, 1976.Google Scholar
8.Hoadley, B., Asymptotic properties of maximum likelihood estimates for the independent but not identically distributed case. Annals of Mathematical Statistics 42 (1971): 19771990.CrossRefGoogle Scholar
9.Huber, P.J. The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 221233. University of California Press, 1967.Google Scholar
10.Ito, K. & Nisio, M.. On the convergence of sums of independent Banach space valued random variables. Osaka Mathematical Journal 5 (1968): 3548.Google Scholar
11.Jennrich, R.I.Asymptotic properties of nonlinear least-squares estimation. Annals of Mathematical Statistics 40 (1969): 633643.CrossRefGoogle Scholar
12.Lai, T.-L., Robbins, H., & Wei, C.Z.. Strong consistency of least-squares estimates in multiple regressions. Proceedings of the National Academy of Sciences, USA 75(7) (1978): 30343036.CrossRefGoogle Scholar
13.Lai, T.-L., Robbins, H., & Wei, C.Z.. Strong consistency of least-squares estimates in multiple regression, II. Journal of Multivariate Analysis (1979).CrossRefGoogle Scholar
14.Lai, T.-L. & Wei, C.Z.. Least-squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Annals of Statistics 10(1) (1982): 154166.CrossRefGoogle Scholar
15.Malinvaud, E., The consistency of nonlinear regressions. Annals of Mathematical Statistics 41 (1970): 956969.CrossRefGoogle Scholar
16.Mourier, E., Eléments aleaotoires dans un espace de Banach. Annales de l'Institut Henri Poincaré 13 (1953): 159244.Google Scholar
17.Oberhofer, W., The consistency of nonlinear regressions minimizing the L1-norms. Annals of Statistics 10(1) (1982): 316319.CrossRefGoogle Scholar
18.Perlman, M.D.On the strong consistency of approximate maximum likelihood estimators. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 1 (1970): 263281.Google Scholar
19.Pisier, G., Remarques sur les classes de Vapnik-Červonenkis. Annales de l'Institut Henri Poincaré: Prob, et Stat. 20(4) (1984): 287298.Google Scholar
20.Pollard, D.Convergence of stochastic processes. New York: Springer-Verlag, 1984.CrossRefGoogle Scholar
21.Pötscher, B.M. & Prucha, I.R.. Consistency in nonlinear econometrics: a generic uniform law of large numbers and some comments on recent results. Working Paper No. 86–9, Department of Economics, University of Maryland, 1986.Google Scholar
22.Robinson, P.M.Nonlinear regression for multiple time series. Journal of Applied Probability 9 (1972): 758768.CrossRefGoogle Scholar
23.Ruskin, D.M. M-estimates of nonlinear regression parameters and their jackknife constructed confidence intervals. Ph.D. Dissertation, University of California, Los Angeles, 1978.Google Scholar
24.Tortrat, A., Lois de probabilité sur un espace topologique complètement régulier et produits infinis à terms indépendent dans un groupe topologique. Annales de l'institut Henri–Poincaré 1 (1965): 217237.Google Scholar
25.Wald, A.A note on the consistency of the maximum likelihood estimate. Annals of Mathematical Statistics 20 (1949): 595601.CrossRefGoogle Scholar
26.Wu, C.-F.Asymptotic theory of nonlinear least-squares estimation. Annals of Statistics 9(3) (1981): 501513.CrossRefGoogle Scholar
27.Zaman, A.A type 2 inequality for functions of bounded variation. Journal of Multivariate Analysis 24(1) (1988): 5355.CrossRefGoogle Scholar
28.Zaman, A., Semiuniform convergence and the consistency of M-estimators: the discrete case. Discussion Paper No. 369, Department of Economics, Columbia University, NY, 1987.Google Scholar