Hostname: page-component-758b78586c-t6tmf Total loading time: 0 Render date: 2023-11-28T17:13:57.678Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Climate change and conservation implications for wet meadows in dry Patagonia

Published online by Cambridge University Press:  28 August 2013

Cooperative Wildlife Research Laboratory, 1125 Lincoln Drive, 251 Life Science II, Southern Illinois University, Carbondale, IL, 62901-6504, USA Department of Forestry, 1205 Lincoln Drive, 184 Agriculture Building, Southern Illinois University, Carbondale, IL 62901-6504, USA
Cooperative Wildlife Research Laboratory, 1125 Lincoln Drive, 251 Life Science II, Southern Illinois University, Carbondale, IL, 62901-6504, USA Department of Forestry, 1205 Lincoln Drive, 184 Agriculture Building, Southern Illinois University, Carbondale, IL 62901-6504, USA Center for Ecology, 1125 Lincoln Drive, 326 Life Science II, Southern Illinois University, Carbondale, IL 62901-6504, USA
Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
*Correspondence: Ramiro D. Crego Tel: +1 618 453 6947 Fax: +1 618 453 6944 e-mail:


Climate change is predicted to be a major threat for biodiversity and, from a conservation prospective, it is important to understand how ecosystems may respond to that change. Predicted climate change effects on the distribution of meadows in the arid and semi-arid Argentinean Patagonia by 2050 were assessed for change trends and areas of desertification vulnerability using species distribution models (SDM) and climate-change models. Four modelling techniques composed an ensemble-forecasting approach. Suitable areas for meadows will decrease by 7.85% by 2050 given predicted changes in climate. However, there were two contrasting trends: severe reduction of suitable areas for meadows in north-west Patagonia and Tierra del Fuego Island, and an expansion of suitable areas for meadows in the south and a small section in the north-west. Meadows in Patagonia will likely be impacted by climate change, probably due to changes in precipitation regimes, and consequently many species that rely on meadows in an arid environment will also be impacted. Given the low level of protection of meadows in Patagonia, such information on meadow distribution and vulnerability to climate change will be important for increasing and improving the network of conservation areas through conservation planning.

THEMATIC SECTION: Spatial Simulation Models in Planning for Resilience
Copyright © Foundation for Environmental Conservation 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Akaike, H. (1973) Maximum likelihood identification of Gaussian autoregressive average models. Biometrika 60: 255265.Google Scholar
Araújo, M.B. & New, M. (2006) Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 4247.Google Scholar
Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology 11: 15041513.Google Scholar
Bertiller, M., Elissalde, N., Rostagno, C. & Defosse, G. (1995) Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. Journal of Arid Environments 29: 8597.Google Scholar
Boelke, O. (1957) Comunidades herbáceas del norte de Patagonia y su relación con la ganadería. Revista de Investigaciones Agropecuarias 11: 598.Google Scholar
Botkin, D.B., Saxe, H., Araújo, M.B., Betts, R., Bradshaw, R.H.W., Cedhagen, T., Chesson, P., Dawson, T.P., Etterson, J.R., Faith, D.P., Ferrier, S., Guisan, A., Hansen, A.S., Hilbert, D. W., Loehle, C., Margules, C., New, M., Sobel, M.J. & Stockwell, D.R.B. (2007) Forecasting the effects of global warming on biodiversity. BioScience 57: 227236.Google Scholar
Brinson, M.M. & Malvárez, A.I. (2002) Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29: 115133.Google Scholar
Buisson, L., Thuiller, W., Casajuss, N., Lek, S. & Grenouillet, G. (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16: 11451157.Google Scholar
Buono, G., Oesterheld, M., Nakamatsu, V. & Paruelo, J.M. (2010) Spatial and temporal variation of primary production of Patagonian wet meadows. Journal of Arid Environments 74: 12571261.Google Scholar
Burkart, R., Carpinetti, B., Molinari, R., Carminati, A., Martín, G., Balabusic, A., Raffo, L., Machain, N., Almirón, M., Paz Barreto, D., Ochoa, M., Melhem, S., Gazibe, V., Rodríguez, V., Monguillot, J., Somma, D., Moreno, D., Fourcade de Ruiz, M., Simonetti de Uribelarrea, D., Lunazzi, M., et al. (2007) Las Areas Protegidas de la Argentina. Herramienta Superior Para la Conservación de Nuestro Patrimonio Natural y Cultural. Buenos Aires, Argentina: Administración de Parques Nacionales.Google Scholar
Chehébar, C., Novaro, A., Iglesias, G., Walker, S., Funes, M., Tammone, M. & Didier, K. (2012) Valoración de sitios para la conservación de la biodiversidad en la estepa y el monte de Patagonia. Administración de Parques Nacionales, Wildlife Conservation Society and The Nature Conservancy.Google Scholar
Crego, R.D. (2012) Modeling the distribution of meadows in arid and semi-arid Patagonia, Argentina: assessing current distribution and predicting response to climate change. Thesis, Southern Illinois University, Carbondale, USA.Google Scholar
Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. (2007) Random forests for classification in ecology. Ecology 88: 27832792.Google Scholar
Davies, T.J., Purvis, A. & Gittleman, J.L. (2009) Quaternary climate change and the geographic ranges of mammals. The American Naturalist 174: 297307.Google Scholar
Davis, M.B. & Shaw, R.G. (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292: 673679.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43: 393404.Google Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 3849.Google Scholar
Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation 18: 22552261.Google Scholar
Fundación e Instituto Torcuato Di Tella (2006) Comunicación Nacional de Cambio Climático: Vulnerabilidad de la Patagonia y Sur de las Provincias de Buenos Aires y La Pampa. Buenos Aires, Argentina: Fundación e Instituto Torcuato Di Tella.Google Scholar
Groves, C.R., Game, E.T., Anderson, M.G., Cross, M., Enquist, C., Ferdaña, Z., Girvetz, E., Gondor, A., Hall, K.R., Higgins, J., Marshall, R., Popper, K., Schill, S. & Shafer, S.L. (2012) Incorporating climate change into systematic conservation planning. Biodiversity and Conservation 21: 16511671.Google Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
IPCC (2007) Climate Change 2007: IPCC 4th Assessment Report. Geneva, Switzerland: International Panel on Climate Change.Google Scholar
Iriondo, M. (1989) Quaternary lakes of Argentina. Palaeogeography, Palaeoclimatology and Palaeoecology 78: 8188.Google Scholar
Irisarri, J.G.N., Oesterheld, M., Paruelo, J.M. & Texeira, M.A. (2012) Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. Journal of Vegetation Science 23: 114126.Google Scholar
Jobbágy, E.G., Paruelo, J.M. & León, R.J.C. (1996) Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science 7: 599608.Google Scholar
Kitoh, A., Kusunoki, S. & Nakaegawa, T. (2011) Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Journal of Geophysical Research 116: 121.Google Scholar
Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C., Harper, G.J., Hijmans, R.J., Lees, D.C., Louis, E., Nussbaum, R.A, Raxworthy, C.J., Razafimpahanana, A., Schatz, G.E., Vences, M., Vieites, D.R., et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222226.Google Scholar
Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R. & Bartlein, P.J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90: 588597.Google Scholar
Lawler, J.J., White, D., Neilson, R.P. & Blaustein, A.R. (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biology 12: 15681584.Google Scholar
León, R.J.C., Bran, D., Collantes, M., Paruelo, J.M. & Soriano, A. (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8: 125144.Google Scholar
Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145151.Google Scholar
Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature 405: 243253.Google Scholar
Marini, M.Â., Barbet-Massin, M., Martinez, J., Prestes, N.P. & Jiguet, F. (2010) Applying ecological niche modelling to plan conservation actions for the red-spectacled Amazon (Amazona pretrei). Biological Conservation 143: 102112.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 5969.Google Scholar
Mazzoni, E. (2000) Los ecosistemas de mallines. In: El Gran Libro de la Provincia de Santa Cruz, ed. Mazzoni, A. & García, E., pp. 230232. Madrid, España: Ed. Milenio.Google Scholar
Mazzoni, E. & Vázquez, M. (2004) Ecosistemas de Mallines y Paisajes de la Patagonia Austral (Provincia de Santa Cruz). Buenos Aires, Argentina: Ediciones Instituto Nacional de Tecnología Agropecuaria (INTA).Google Scholar
McCarty, J.P. (2001) Ecological consequences of recent climate change. Conservation Biology 15: 320331.Google Scholar
Modenutti, B.E., Balseiro, E., Diéguez, C. & Queimaliños, C. (1998) Heterogeneity of fresh-water Patagonian ecosystems. Ecología Austral 8: 155165.Google Scholar
Nakicenovic, N., Swart, R. & Editors (2000) Emission Scenarios. Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Nuñez, M.N., Solman, S.A. & Cabré, M.F. (2009) Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Climate Dynamics 32: 10811095.Google Scholar
Olson, L.T. & Lindsay, K.F. (2009) Here today, gone tomorrow? Targeting conservation investment in the face of climate change. Journal of Geography and Regional Planning 2: 2029.Google Scholar
Ortega, I.M. & Franklin, W.L. (1988) Feeding habitat utilization and preference by guanaco male groups in the Chilean Patagonia. Revista Chilena de Historia Natural 61: 209216.Google Scholar
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637669.Google Scholar
Paruelo, J.M. & Aguiar, M.R. (2003) Impacto humano sobre los ecosistemas. El caso de la desertificación. Ciencia Hoy 13: 4859.Google Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E. & Golluscio, R.A. (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8: 85101.Google Scholar
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361371.Google Scholar
Perotti, M.G., Diéguez, M.C. & Jara, F.G. (2005) Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Revista Chilena de Historia Natural 78: 723737.Google Scholar
Pressey, R.L. & Cowling, R.M. (2001) Reserve selection algorithms and the real world. Conservation Biology 15: 275277.Google Scholar
Puig, S., Videla, F., Cona, M.I. & Roig, V.G. (2008) Habitat use by guanacos (Lama guanicoe, Camelidae) in northern Patagonia (Mendoza, Argentina). Studies on Neotropical Fauna and Environment 43: 19.Google Scholar
R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ramirez-Villegas, J. & Jarvis, A. (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis working paper no. 1. International Center for Tropical Agriculture (CIAT), Cali, Colombia.Google Scholar
Rusticucci, M. & Barrucand, M. (2004) Observed trends and changes in temperature extremes over Argentina. Journal of Climate 17: 40994107.Google Scholar
Segurado, P. & Araújo, M.B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 15551568.Google Scholar
Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P. & Reşit Akçakaya, H. (2012) Combining static and dynamic variables in species distribution models under climate change. Methods in Ecology and Evolution 3 (2): 349357.Google Scholar
Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240: 12851293.Google Scholar
Thomas, C.D. (2010) Climate, climate change and range boundaries. Diversity and Distributions 16: 488495.Google Scholar
Thuiller, W. (2004) Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology 10: 20202027.Google Scholar
Thuiller, W. (2007) Climate change and the ecologist. Nature 448: 550552.Google Scholar
Thuiller, W. (2009) ModOperating manual for BIOMOD. Grenoble, France: University Joseph Fourier.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32: 369373.Google Scholar
Zhang, X.C. (2005) Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology 135: 215229.Google Scholar
Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C., Meier, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences USA 106: 1972319728.Google Scholar
Supplementary material: File

Crego Supplementary Material


Download Crego Supplementary Material(File)
File 3 MB