Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-97jns Total loading time: 0.409 Render date: 2021-09-26T17:27:57.644Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Island biogeography of insect conservation in urban green spaces

Published online by Cambridge University Press:  10 March 2017

SIMONE FATTORINI*
Affiliation:
Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy CE3C – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
CRISTINA MANTONI
Affiliation:
Via Apiro 58, 00138, Rome, Italy
LIVIA DE SIMONI
Affiliation:
Via del Ceraso 20, 67046, Ovindoli, L'Aquila, Italy
DIANA M.P. GALASSI
Affiliation:
Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
*
*Correspondence: Dr Simone Fattorini e-mail: simone.fattorini@univaq.it

Summary

Because of their isolation, biotic communities of urban green spaces are expected to be similar to those of oceanic islands. This should be particularly true for insects, which represent an important component of urban faunas. The equilibrium theory of island biogeography (ETIB) allows for the formulation of some hypotheses regarding the influence of the geographical characteristics of green spaces on insect species richness and extinction risk. Based on island biogeography principles, we present eight predictions on how green space characteristics should influence insect species richness and loss. We analysed the current literature in order to determine which predictions were supported and which were not. We found that many studies gave outcomes that support ETIB predictions about the effects of area and isolation of green spaces; we found no strong support for predictions about shape and extent of native habitat in the literature that we reviewed. Most of the available studies dealt with patterns in species richness, whereas insect species loss has been rarely investigated. Future developments in the application of island biogeography principles to urban insect conservation should address temporal trends in species persistence and the analysis of species co-occurrence and nestedness.

Type
Subject Review
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, F.R. & Tanner, C.J. (2013), Urban Ecosystems, Ecological Principles for the Built Environment. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Alvarenga, R.D., De Castro, M.M., Santos-Prezoto, H.H. & Prezoto, F. (2010) Nesting of social wasps (Hymenoptera, Vespidae) in urban gardens in Southeastern Brazil. Sociobiology 55: 445452.Google Scholar
Angold, P.G., Sadler, J.P., Hill, M.O., Pullin, A., Rushton, S., Austin, K., Small, E., Wood, B., Wadsworth, R., Sanderson, R. & Thompson, K. (2006) Biodiversity in urban habitat patches. Science of the Total Environment 360: 196204.CrossRefGoogle ScholarPubMed
Andrén, H. (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355366.CrossRefGoogle Scholar
Baz, A. & Monserrat, V.J. (1999) Distribution of domestic Psocoptera in Madrid apartments. Medical and Veterinary Entomology 13: 259264.CrossRefGoogle ScholarPubMed
Blair, R.B. & Launer, A.E. (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biological Conservation 80: 113125.CrossRefGoogle Scholar
Bode, R.F. & Maciejewski, A. (2014) Herbivore biodiversity varies with patch size in an urban archipelago. International Journal of Insect Science 6: 4955.CrossRefGoogle Scholar
Bolger, D.T., Suarez, A.V., Crooks, K.R., Morrison, S.A. & Case, T.J. (2000) Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecological Applications 10: 12301248.CrossRefGoogle Scholar
Bräuniger, C., Knapp, S., Kuhn, I. & Klotz, S. (2010) Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landscape and Urban Planning 97: 283295.CrossRefGoogle Scholar
Breuste, J., Haase, D. & Elmqvist, T. (2013) Urban landscapes and ecosystem services. In: Ecosystem Services in Agricultural and Urban Landscapes, eds. Wratten, S., Sandhu, H., Cullen, R. & Costanza, R., pp. 83104. Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
Burns, K.C. & Neufeld, C.J. (2009) Plant extinction dynamics in an insular metacommunity. Oikos 118: 191198.CrossRefGoogle Scholar
Clarke, K.M., Fisher, B.L. & LeBuhn, G. (2008) The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosystems 11: 317334.CrossRefGoogle Scholar
Clark, A.T., Rykken, J.J. & Farrell, B.D. (2011) The effects of biogeography on ant diversity and activity on the Boston harbor islands, Massachusetts, USA. PLoS One 6: e28045.CrossRefGoogle Scholar
Cox, C.B. & Moore, P.D. (2010) Biogeography. An Ecological and Evolutionary Approach. Eighth edition. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Davis, B.N.K. (1979) The ground arthropods of London gardens. London Naturalist 58: 1524.Google Scholar
Davies, K.F., Gascon, C. & Margules, C.R. (2001) Habitat fragmentation: consequences, management, and future research priorities. In: Conservation Biology. Research Priorities for the Next Decade, eds. Soulé, M.E. & Orians, G.H., pp. 8197. Washington, DC: Society for Conservation Biology, Island Press.Google Scholar
Davies, K.F. & Margules, C.R. (1998) Effects of habitat fragmentation on carabid beetles: experimental evidence. Journal of Animal Ecology 67: 460471.CrossRefGoogle Scholar
Dennis, R.L.H. (2010) A Resource-based Habitat View for Conservation. Butterflies in the British Landscape. Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
Diamond, J.M. (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation 7: 129145.CrossRefGoogle Scholar
Dias, P.C. (1996) Sources and sinks in population biology. Trends in Ecology and Evolution 11: 326330.CrossRefGoogle ScholarPubMed
Donnelly, R. & Marzluff, J.M. (2004) Importance of reserve size and landscape context to urban bird conservation. Conservation Biology 18: 733745.CrossRefGoogle Scholar
Faeth, S.H. & Kane, T.C. (1978) Urban biogeography: city parks as islands for Diptera and Coleoptera. Oecologia 32: 127133.CrossRefGoogle ScholarPubMed
Fahrig, L. (1997) Relative effects of habitat loss and fragmentation on population extinction. Journal of Wildlife Management 61: 603610.CrossRefGoogle Scholar
Fattorini, S. (2010) The use of cumulative area curves in biological conservation: a cautionary note. Acta Oecologica 36: 255258.CrossRefGoogle Scholar
Fattorini, S. (2011a) Insect extinction by urbanization: a long term study in Rome. Biological Conservation 144: 370375.CrossRefGoogle Scholar
Fattorini, S. (2011b) Insect rarity, extinction and conservation in urban Rome (Italy): a 120-year-long study of tenebrionid beetles. Insect Conservation and Diversity 4: 307315.CrossRefGoogle Scholar
Fattorini, S. (2013) Species ecological preferences predict extinction risk in urban tenebrionid beetle guilds. Animal Biology 63: 93106.CrossRefGoogle Scholar
Fattorini, S. (2014a) Island biogeography of urban insects: tenebrionid beetles from Rome tell a different story. Journal of Insect Conservation 18: 729735.CrossRefGoogle Scholar
Fattorini, S. (2014b) Urban biodiversity hotspots are not related to the structure of green spaces: a case study of tenebrionid beetles from Rome, Italy. Urban Ecosystems 17: 10331045.CrossRefGoogle Scholar
Fattorini, S. (2016) Insects and the city: what island biogeography tells us about insect conservation in urban areas. Web Ecology 16: 4145.CrossRefGoogle Scholar
Fattorini, S., Dapporto, L., Strona, G., & Borges, P.A.V. (2015) Calling for a new strategy to measure environmental (habitat) diversity in island biogeography: a case study of Mediterranean tenebrionids (Coleoptera: Tenebrionidae). Fragmenta Entomologica 47: 114.CrossRefGoogle Scholar
Fetridge, E.D., Ascher, J.S. & Langellotto, G.A. (2008) The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Annals of the Entomological Society of America 101: 10671077.CrossRefGoogle Scholar
Fortel, L., Henry, M., Guilbaud, L., Guirao, A.L., Kuhlmann, M., Mouret, H., Rollin, O. & Vaissière, B. E. (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9: e104679.CrossRefGoogle ScholarPubMed
Fujita, A., Maetro, K., Kagawa, Y. & Ito, N. (2008) Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: Carabidae and Brachinidae) in urban landscapes. Entomological Science 11: 3948.CrossRefGoogle Scholar
Gaublomme, E., Hendrickx, F., Dhuyvetter, H. & Desender, K. (2008) The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biological Conservation 141: 25852596.CrossRefGoogle Scholar
Gibb, H. & Hochuli, D.F. (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biological Conservation 106: 91100.CrossRefGoogle Scholar
Giuliano, W.M., Accamando, A.K. & Mcadams, E.J. (2004) Lepidoptera–habitat relationships in urban parks. Urban Ecosystems 7: 361370.CrossRefGoogle Scholar
Gosselin, F. (1996) Extinction in a simple source/sink system: application of new mathematical results. Acta Oecologica 17: 563584.Google Scholar
Hamerlik, L. & Brodersen, K.P. (2010) Non-biting midges (Diptera: Chironomidae) from fountains of two European cities: micro-scale island biogeography. Aquatic Insects 32: 6779.CrossRefGoogle Scholar
Hardy, P.B. & Dennis, R.L.H. (1999) The impact of urban development on butterflies within a city region. Biodiversity and Conservation 8: 12611279.CrossRefGoogle Scholar
Heneghan, L., Mulvaney, C., Ross, K., Umek, L., Watkins, C., Westphal, L.M. & Wise, D.H. (2012) Lessons learned from Chicago wilderness – implementing and sustaining conservation management in an urban setting. Diversity 4: 7493.CrossRefGoogle Scholar
Hogsden, K.L. & Hutchinson, T.C. (2004) Butterfly assemblages along a human disturbance gradient in Ontario, Canada. Canadian Journal of Zoology 82: 739748.CrossRefGoogle Scholar
Hunter, M.C.R. & Hunter, M.D. (2008) Designing for conservation of insects in the built environment. Insect Conservation and Diversity 1: 189196.Google Scholar
Jones, E.L. & Leather, S.R. (2012) Invertebrates in urban areas: a review. European Journal of Entomology 109: 463478.CrossRefGoogle Scholar
Knapp, S., Kuhn, I., Mosbrugger, V. & Klotz, S. (2008) Do protected areas in urban and rural landscapes differ in species diversity? Biodiversity and Conservation 17: 15951612.CrossRefGoogle Scholar
Koh, L.P. & Sodhi, N.S. (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecological Applications 14: 16751708.CrossRefGoogle Scholar
Koivula, M.J. & Vermeulen, H.J.W. (2005) Highways and forest fragmentation – effects on carabid beetles (Coleoptera, Carabidae). Landscape Ecology 20: 911926.CrossRefGoogle Scholar
Kotze, D.J., Lehvävirta, S., Koivula, M., O'Hara, R.B. & Spence, J.R. (2012) Effects of habitat edges and trampling on the distribution of ground beetles (Coleoptera, Carabidae) in urban forests. Journal of Insect Conservation 16: 883897.CrossRefGoogle Scholar
Leather, S.R. & Helden, A.J. (2005) Magic roundabouts? Teaching conservation in schools and universities. Journal of Biological Education 39: 102107.CrossRefGoogle Scholar
Lizée, M.H., Mane, S., Mauffrey, J.F., Tatoni, T. & Deschamps-Cottin, M. (2012) Matrix configuration and patch isolation influences override the species–area relationship for urban butterfly communities. Journal of Landscape Ecology 27: 159169.CrossRefGoogle Scholar
Lomolino, M.V., Riddle, B.R., Whittaker, R.J. & Brown, J.H. (2010) Biogeography. Fourth Edition. Sunderland, MA: Sinauer Associates, Inc.Google ScholarPubMed
MacArthur, R.H. & Wilson, E.O. (1963) An equilibrium theory of insular zoogeography. Evolution 17: 373387.CrossRefGoogle Scholar
MacArthur, R.H. & Wilson, E.O. (1967) The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Magura, T., Tóthmérész, B. & Molnár, T. (2001) Forest edge and diversity: carabids along forest–grassland transects. Biodiversity and Conservation 10: 287300.CrossRefGoogle Scholar
Marzluff, J.M. (2005) Island biogeography for an urbanizing world: how extinction and colonization may determine biological diversity in human-dominated landscapes. Urban Ecosystems 8: 157177.CrossRefGoogle Scholar
Matteson, K.C., Ascher, J.S., & Langellotto, G.A. (2008) Bee richness and abundance in New York City urban gardens. Annals of the Entomological Society of America 101: 140150.CrossRefGoogle Scholar
Matteson, K.C. & Langellotto, G.A. (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosystems 13: 333347.CrossRefGoogle Scholar
McDonald, R.I., Marcotullio, P.J. & Güneralp, B. (2013) Urbanization and global trends in bodiversity and ecosystem services. In: Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities, eds. Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., & Wilkinson, C., pp. 3152. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
McDonnell, M.J. & Hahs, A.K. (2013) The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosystems 16: 397409.CrossRefGoogle Scholar
McFrederick, Q.S. & LeBuhn, G. (2006) Are urban parks refuges for bumble bees, Bombus spp. (Hymenoptera: Apidae)? Biological Conservation 129: 372382.CrossRefGoogle Scholar
McIntyre, N.E. (2000) Ecology of urban arthropods: a review and a call to action. Annals of the Entomological Society of America 93: 825835.CrossRefGoogle Scholar
McKinney, M.L. (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems 11: 161176.CrossRefGoogle Scholar
Morrison, L.W. (2010) Long-term non-equilibrium dynamics of insular floras: a 17-year record. Global Ecology and Biogeography 19: 663672.Google Scholar
New, T. (2015) Insect Conservation and Urban Environments. Cham, Switzerland: Springer.CrossRefGoogle Scholar
Nielsen, A.B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, K.C., (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosystems 17: 305327.CrossRefGoogle Scholar
Öckinger, E., Dannestam, A. & Smith, H.G. (2009) The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landscape and Urban Planning 93: 3137.CrossRefGoogle Scholar
Pacheco, R. & Vasconcelos, H.L. (2007) Invertebrate conservation in urban areas: ants in the Brazilian Cerrado. Landscape and Urban Planning 81: 193199.CrossRefGoogle Scholar
Pullin, A.S. & Stewart, G.B. (2006) Guidelines for systematic review in conservation and environmental management. Conservation Biology 20: 16471656.CrossRefGoogle ScholarPubMed
Rey, J.R. (1981) Ecological biogeography of arthropods on Spartina Islands in northwest Florida. Ecological Monographs 51: 237265.CrossRefGoogle Scholar
Robinson, G.R., Yurlina, M.E., & Handel, S.N. (1994) A century of change in the Staten Island flora: ecological correlates of species losses and invasions. Bulletin of the Torrey Botanical Club 121: 119129.CrossRefGoogle Scholar
Saarinen, K., Valtonen, A., Jantunen, J. & Saarnio, S. (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biological Conservation 123: 403412.CrossRefGoogle Scholar
Sadler, J.P., Small, E.C., Fiszpan, H., Telfer, M.G. & Niemelä, J. (2006) Investigating environmental variation and landscape characteristics of an urban–rural gradient using woodland carabid assemblages. Journal of Biogeography 33: 11261138.CrossRefGoogle Scholar
Sattler, T., Obristb, M.K., Duellib, P. & Moretti, M. (2011) Urban arthropod communities: added value or just a blend of surrounding biodiversity? Landscape and Urban Planning 103: 347361.CrossRefGoogle Scholar
Schiller, A. & Horn, S.P. (1997) Wildlife conservation in urban greenways of the mid-southeastern United States. Urban Ecosystems 1: 103116.CrossRefGoogle Scholar
Secretariat of the Convention on Biological Diversity (2012) Cities and Biodiversity Outlook. A Global Assessment of the Links between Action and Policy: Urbanization, Biodiversity, and Ecosystem Services. Montreal, QC: Secretariat of the Convention on Biological Diversity.Google Scholar
Shwartz, A., Muratet, A., Simon, L. & Julliard, R. (2013). Local and management variables outweigh landscape effects in enhancing the diversity of different taxa in a big metropolis. Biological Conservation 157: 285292.CrossRefGoogle Scholar
Sisk, T.D., Haddad, N.M. & Ehrlich, P.R. (1997) Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitat. Ecological Applications 7: 11701180.CrossRefGoogle Scholar
Smith, J., Chapman, A. & Eggleton, P. (2006) Baseline biodiversity surveys of the soil macrofauna of London's green spaces. Urban Ecosystems 9: 337349.CrossRefGoogle Scholar
Soga, M., Kanno, N., Yamaura, Y. & Koike, S. (2013) Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. Journal of Insect Conservation 17: 421428.CrossRefGoogle Scholar
Strauss, B. & Biedermann, R. (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29: 928940.CrossRefGoogle Scholar
Su, Z., Li, X., Zhou, W. & Ouyang, Z. (2015) Effect of landscape pattern on insect species density within urban green spaces in Beijing, China. PLoS One 10: e0119276.Google ScholarPubMed
Thomas, C.D., Baguette, M. & Lewis, O.T. (2000) Butterfly movement and conservation in patchy landscapes. In: Behaviour and Conservation. Conservation Biology Series 2, eds. Gosling, M.L. & Sutherland, W.J., pp. 85104. Cambridge, UK: Cambridge University Press.Google Scholar
Triantis, K.A. & Bhagwat, S.A. (2011) Applied island biogeography. In: Conservation Biogeography, eds. Ladle, R.J. & Whittaker, R.J., pp. 190223. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
United Nations (2014) World Urbanization Prospects. The 2014 revision [www document]. URL http://esa.un.org/unpd/wup/ Google Scholar
Valtonen, A., Saarinen, K. & Jantunen, J. (2007) Intersection reservations as habitats for meadow butterflies and diurnal moths: guidelines for planning and management. Landscape and Urban Planning 79: 201209.CrossRefGoogle Scholar
Weller, B. & Ganzhorn, J.U. (2004) Carabid beetle community composition, body size, and fluctuating asymmetry along an urban–rural gradient. Basic and Applied Ecology 5: 193201.CrossRefGoogle Scholar
Whittaker, R.J., Field, R. & Partomihardjo, T. (2000) How to go extinct: lessons from the lost plants of Krakatau. Journal of Biogeography 27: 10491064.CrossRefGoogle Scholar
Wilson, E.O. & Simberloff, D.S. (1968) Experimental zoogeography of islands: defaunation and monitoring techniques. Ecology 50: 267278.CrossRefGoogle Scholar
Wolf, J.M. & Gibbs, J.P. (2004) Silphids in urban forests: diversity and function. Urban Ecosystems 7: 371384.CrossRefGoogle Scholar
Yamaguchi, T. (2004) Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan – I. Analysis of ant species richness. Ecological Research 19: 209216.CrossRefGoogle Scholar
Yamaura, Y., Kawahara, T., Lida, S. & Ozaki, K. (2008) Relative importance of the area and shape of patches to the diversity of multiple taxa. Conservation Biology 22: 15131522.CrossRefGoogle ScholarPubMed
13
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Island biogeography of insect conservation in urban green spaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Island biogeography of insect conservation in urban green spaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Island biogeography of insect conservation in urban green spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *