Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T12:35:45.456Z Has data issue: false hasContentIssue false

Droughts and controlled rivers: how Belo Monte Dam has affected the food security of Amazonian riverine communities

Published online by Cambridge University Press:  27 December 2023

Priscila FM Lopes*
Affiliation:
Fishing Ecology, Management and Economics Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, Brazil Fisheries and Food Institute, Rio de Janeiro, Brazil
Marta Cousido-Rocha
Affiliation:
Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
Monalisa RO Silva
Affiliation:
Fishing Ecology, Management and Economics Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, Brazil Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Cristiane C Carneiro
Affiliation:
Federal Prosecutor Office, Altamira, Pará, Brazil
Juarez CB Pezzuti
Affiliation:
Fisheries and Food Institute, Rio de Janeiro, Brazil Centre for Advanced Amazonian Studies (NAEA), Universidade Federal do Pará, Belém, Brazil Rio de Janeiro National Museum, Rio de Janeiro, Brazil
Eduardo G Martins
Affiliation:
Department of Ecosystem Science and Management, University of Northern British Columbia, Prince Geroge, BC, Canada
Eder MS De Paula
Affiliation:
Faculdade de Geografia e Cartografia, Universidade Federal do Pará, Belém, Brazil
Alpina Begossi
Affiliation:
Fisheries and Food Institute, Rio de Janeiro, Brazil Center of Studies and Research in Food (NEPA), CAPESCA, University of Campinas, Campinas, Brazil
Maria G Pennino
Affiliation:
Fishing Ecology, Management and Economics Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, Brazil Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
*
Corresponding author: Priscila FM Lopes; Email: priscila.lopes@ufrn.br

Summary

The Neotropics have vast river catchments with untapped hydroelectric potential, but there are multiple expected negative impacts of dams, including those on local food security and livelihoods. Yet, monitoring of dam effects on subsistence is rare, particularly during initial implementation. Our study assessed changes in human fish consumption near the Belo Monte Dam in the Brazilian Amazon during the period 2012–2021, which covers construction, operation and a severe El Niño-induced drought. Over time, fish became less common and were consumed in smaller amounts, even though fewer people shared meals. The largest changes occurred between 2013 and 2016 (post-construction but prior to full operation), resulting in a downward trend in fish consumption, particularly during the drought season. Adding more fish species to the diet did not increase consumption per person. These changes in fish consumption suggest that they stem from environmental impacts of the project (e.g., reduced river level), despite secondary effects from climatic events. These findings underscore the urgent need for comprehensive assessments of the social and ecological impacts of large infrastructure projects in the Amazon, along with sustainable and equitable management strategies to ensure food security and meet the needs of local communities.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memoriam.

References

Agostinho, AA, Gomes, LC, Santos, NLC, Ortega, JCG, Pelicice, FM (2016) Fish assemblages in neotropical reservoirs: colonization patterns, impacts, and management. Fisheries Research 173: 2636.CrossRefGoogle Scholar
Alfredsen, K, Amundsen, P-A, Hahn, L, Harrison, PM, Helland, IP, Martins, EG et al. (2022) A synoptic history of the development, production and environmental oversight of hydropower in Brazil, Canada, and Norway. Hydrobiologia 849: 269280.CrossRefGoogle Scholar
Alves, JC, Andreotti, GF, Agostinho, AA, Gomes, LC (2021) Effects of the El Niño Southern Oscillation (ENSO) on fish assemblages in a Neotropical floodplain. Hydrobiologia 848: 18111823.CrossRefGoogle Scholar
Anderson, EP, Pringle, CM, Rojas, M (2006) Transforming tropical rivers: an environmental perspective on hydropower development in Costa Rica. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 679693.CrossRefGoogle Scholar
Arantes, CC, Fitzgerald, DB, Hoeinghaus, DJ, Winemiller, KO (2019) Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability 37: 2840.CrossRefGoogle Scholar
Baird, IG, Shoemaker, B (2007) Unsettling experiences: internal resettlement and international aid agencies in Laos. Development and Change 38: 865888.CrossRefGoogle Scholar
Barbarossa, V, Schmitt, RJP, Huijbregts, MAJ, Zarfl, C, King, H, Schipper, AM (2020) Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America 117: 36483655.CrossRefGoogle ScholarPubMed
Begossi, A, Salivonchyk, SV, Hallwass, G, Hanazaki, N, Lopes, PFM, Silvano, RAM et al. (2019) Fish consumption on the Amazon: a review of biodiversity, hydropower and food security issues. Brazilian Journal of Biology 79: 345357.CrossRefGoogle ScholarPubMed
Bilgen, S, Kaygusuz, K, Sari, A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26: 11191129.CrossRefGoogle Scholar
Bro, AS, Moran, E, Calvi, MF (2018) Market participation in the age of big dams: the Belo Monte hydroelectric dam and its impact on rural agrarian households. Sustainability 10: 1592.CrossRefGoogle Scholar
Burrier, G (2016) The developmental state, civil society, and hydroelectric politics in Brazil. Journal of Environment & Development 25: 332358.CrossRefGoogle Scholar
Calvi, MF, Moran, EF, da Silva, RFB, Batistella, M (2020) The construction of the Belo Monte Dam in the Brazilian Amazon and its consequences on regional rural labor. Land Use Policy 90: 104327.CrossRefGoogle Scholar
Cerdeira, RGP, Ruffino, ML, Isaac, VJ (1997) Consumo de pescado e outros almentos pela população ribeirinha do Lago Grande de Monte Alegre, PA – Brasil. Acta Amazonica 27: 213227.CrossRefGoogle Scholar
Corrêa, MAdA, Kahn, JR, Freitas, CEdC (2014) Perverse incentives in fishery management: the case of the defeso in the Brazilian Amazon. Ecological Economics 106: 186194.CrossRefGoogle Scholar
Cragg, JG (1971) Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 39: 829844.CrossRefGoogle Scholar
Crush, J (2013) Linking food security, migration and development. International Migration 51: 6175.CrossRefGoogle Scholar
da Costa, MKB, de Melo, CD, Lopes, PFM (2014) Fisheries productivity and its effects on the consumption of animal protein and food sharing of fishers’ and non-fishers’ families. Ecology of Food and Nutrition 53: 453470.CrossRefGoogle ScholarPubMed
Deemer, BR, Harrison, JA, Li, S, Beaulieu, JJ, DelSontro, T, Barros, N et al. (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66: 949964.CrossRefGoogle ScholarPubMed
Diamond, S, Poirier, C (2010) Brazil’s native peoples and the Belo Monte Dam: a case study. NACLA Report on the Americas 43: 2529.CrossRefGoogle Scholar
Doria, CRC, Athayde, S, Marques, EE, Lima, MAL, Dutka-Gianelli, J, Ruffino, ML et al. (2018) The invisibility of fisheries in the process of hydropower development across the Amazon. Ambio 47: 453465.Google ScholarPubMed
Dugan, PJ, Barlow, C, Agostinho, AA, Baran, E, Cada, GF, Chen, D et al. (2010) Fish migration, dams, and loss of ecosystem services in the Mekong Basin. AMBIO 39: 344348.CrossRefGoogle ScholarPubMed
Fauchald, P, Hausner, V, Schmidt, J, Clark, D (2017) Transitions of social-ecological subsistence systems in the Arctic. International Journal of the Commons 11: 275329.CrossRefGoogle Scholar
Fearnside, PM (2014) Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environmental Science & Policy 38: 164172.CrossRefGoogle Scholar
Fearnside, PM (2017) Belo Monte: actors and arguments in the struggle over Brazil’s most controversial Amazonian dam. DIE ERDE – Journal of the Geographical Society of Berlin 148: 1426.Google Scholar
Fitzgerald, DB, Perez, MHS, Sousa, LM, Gonçalves, AP, Py-Daniel, LR, Lujan, NK et al. (2018) Diversity and community structure of rapids-dwelling fishes of the Xingu River: implications for conservation amid large-scale hydroelectric development. Biological Conservation 222: 104112.CrossRefGoogle Scholar
Foran, T, Manorom, K (2009) Pak Mun Dam: perpetually contested? In: Molle, F, Foran, T, Kakonen, M (eds), Contested Waterscapes in the Mekong Region: Hydropower, Livelihoods and Governance (pp. 5580). London, UK: Earthscan.Google Scholar
Francesco, AA (2021) Terror e resistência no Xingu. São Paulo, Brazil: ISA – Instituto Socioambiental.Google Scholar
Grill, G, Lehner, B, Lumsdon, AE, MacDonald, GK, Zarfl, C, Liermann, CR (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters 10: 015001.CrossRefGoogle Scholar
Grisotti, M (2016) The construction of health causal relations in the Belo Monte Dam context. Ambiente e Sociedade 19: 287304.CrossRefGoogle Scholar
Gurven, M, Jaeggi, AV, von Rueden, C, Hooper, PL, Kaplan, H (2015) Does market integration buffer risk, erode traditional sharing practices and increase inequality? A test among Bolivian forager–farmers. Human Ecology 43: 515530.CrossRefGoogle ScholarPubMed
Hahn, L, Martins, EG, Nunes, LD, Machado, LS, Lopes, TM, da Câmara, LF (2022) Semi-natural fishway efficiency for goliath catfish (Brachyplatystoma spp.) in a large dam in the Amazon Basin. Hydrobiologia 849: 323338.CrossRefGoogle Scholar
Hallwass, G, Lopes, PF, Juras, AA, Silvano, RAM (2013) Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecological Applications 23: 392407.CrossRefGoogle ScholarPubMed
Hanna, P, Langdon, EJ, Vanclay, F (2016) Indigenous rights, performativity and protest. Land Use Policy 50: 490506.CrossRefGoogle Scholar
Hernandez, FDM (2012) Hidrelétricas na Amazônia: renovabilidade e não renovabilidade da política energética. Se é desejável a renovabilidade das formas de conversão de energia, por que não é desejável renovar a política energética? Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 7: 791–811.Google Scholar
Hoeinghaus, DJ, Agostinho, AA, Gomes, LC, Pelicice, FM, Okada, EK, Latini, JD et al. (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 12221231.CrossRefGoogle ScholarPubMed
Huntington, HP, Begossi, A, Gearheard, SF, Kersey, B, Loring, PA, Mustonen, T et al. (2017) How small communities respond to environmental change: patterns from tropical to polar ecosystems. Ecology & Society 22: 9.CrossRefGoogle Scholar
Isaac, VJ, de Almeida, MC (2011) El Consumo de pescado en la amazonía brasileña. Rome, Italy: FAO.Google Scholar
Keppeler, FW, Andrade, MC, Trindade, PA, Sousa, LM, Arantes, CC, Winemiller, KO et al. (2022) Early impacts of the largest Amazonian hydropower project on fish communities. Science of the Total Environment 838: 155951.CrossRefGoogle ScholarPubMed
Lees, AC, Peres, CA, Fearnside, PM, Schneider, M, Zuanon, JAS (2016) Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451466.CrossRefGoogle Scholar
LEME (2009) Estudo de Impacto Ambiental do Projeto AHE Belo Monte. LEME Engenharia Ltda/Letrobrás/Camargo Corrêa/Andrade Gutierrez/Odebrecht [www document]. URL http://licenciamento.ibama.gov.br/Hidreletricas/Belo%20Monte Google Scholar
Little, PE (2014) Mega-development Projects in Amazonia: A Geopolitical and Socioenvironmental Primer. Lima, Peru: Derecho, Ambiente y Recursos Naturales.Google Scholar
MacCord, PFL, Begossi, A (2006) Dietary changes over time in a caiçara community from the Brazilian Atlantic Forest. Ecology and Society 11: 38.CrossRefGoogle Scholar
Marin, REA, Oliveira, AdC (2016) Violence and public health in the Altamira region: the construction of the Belo Monte hydroelectric plant. Regions and Cohesion 6: 116134.CrossRefGoogle Scholar
Nagabhatla, N, Pouramin, P, Shin, S, Sharma, P, Glickman, T, Brahmbhatt, R et al. (2020) Water and food security crisis influencing human mobility patterns: a comprehensive overview. In: Squires, VR, Gaur, MK (eds), Food Security and Land Use Change under Conditions of Climatic Variability: A Multidimensional Perspective (pp. 4976). Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
Oliveira, RC, Dórea, JG, Bernardi, JVE, Bastos, WR, Almeida, R, Manzatto, ÂG (2010) Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury. Annals of Human Biology 37: 629642.CrossRefGoogle ScholarPubMed
Orr, S, Pittock, J, Chapagain, A, Dumaresq, D (2012) Dams on the Mekong River: lost fish protein and the implications for land and water resources. Global Environmental Change 22: 925932.CrossRefGoogle Scholar
Owusu, K, Obour, PB, Nkansah, MA (2017) Downstream effects of dams on livelihoods of river-dependent communities: the case of Ghana’s Kpong Dam. Geografisk Tidsskrift – Danish Journal of Geography 117: 110.CrossRefGoogle Scholar
Pelicice, FM, Pompeu, PS, Agostinho, AA (2015) Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697715.CrossRefGoogle Scholar
Pereira, LS, Tencatt, LFC, Dias, RM, de Oliveira, AG, Agostinho, AA (2017) Effects of long and short flooding years on the feeding ecology of piscivorous fish in floodplain river systems. Hydrobiologia 795: 6580.CrossRefGoogle Scholar
Pezzuti, JCB, Zuanon, J, Ribas, C, Sawakuchi, AO, Lopes, PFM, Carneiro, CC et al. (2022) Belo Monte through the food–water–energy nexus: the disruption of a unique socioecological system on the Xingu River. In: FA Moreira, MD Fontana, TF Malheiros, GM Di Giulio (eds), The Water–Energy–Food Nexus: What the Brazilian Research Has to Say (pp. 22–40). São Paulo, Brazil: University of São Paulo.Google Scholar
Piperata, BA (2007) Nutritional status of Ribeirinhos in Brazil and the nutrition transition. American Journal of Physical Anthropology 133: 868878.CrossRefGoogle ScholarPubMed
Poff, NL, Hart, DD (2002) How dams vary and why it matters for the emerging science of dam removal. BioScience 52: 659668.CrossRefGoogle Scholar
Poff, NL, Zimmerman, JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194205.CrossRefGoogle Scholar
R Development Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Resende, AF, Schöngart, J, Streher, AS, Ferreira-Ferreira, J, Piedade, MTF, Silva, TSF (2019) Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: the collateral effects of hydropower production. Science of the Total Environment, 659: 587598.CrossRefGoogle ScholarPubMed
Rudolph, KR, McLachlan, SM (2013) Seeking Indigenous food sovereignty: origins of and responses to the food crisis in northern Manitoba, Canada. Local Environment 18: 10791098.CrossRefGoogle Scholar
Rue, H, Martino, S, Lindgren, F, Simpson, D, Riebler, A, Krainski, E (2009) INLA: Functions which allow to perform a full bayesian analysis of structured additive models using integrated nested laplace approximation. R Package Version 17.3.Google Scholar
Santos, RE, Pinto-Coelho, RM, Fonseca, R, Simões, NR, Zanchi, FB (2018) The decline of fisheries on the Madeira River, Brazil: the high cost of the hydroelectric dams in the Amazon Basin. Fisheries Management and Ecology 25: 380391.CrossRefGoogle Scholar
Schapper, A, Unrau, C, Killoh, S (2020) Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustainable Development 28: 413423.CrossRefGoogle Scholar
Shaffer, CA, Milstein, MS, Yukuma, C, Marawanaru, E, Suse, P (2017) Sustainability and comanagement of subsistence hunting in an indigenous reserve in Guyana. Conservation Biology 31: 11191131.CrossRefGoogle Scholar
Silva, H, Padez, C (2010) Body size and obesity patterns in Caboclo populations from Pará, Amazonia, Brazil. Annals of Human Biology 37: 218230.CrossRefGoogle Scholar
Silvano, RAM, do Amaral, BD, Oyakawa, OT (2000) Spatial and temporal patterns of diversity and distribution of the upper Juruá River fish community (Brazilian Amazon). Environmental Biology of Fishes 57: 2535.CrossRefGoogle Scholar
Warner, K, Afifi, T (2014) Where the rain falls: evidence from 8 countries on how vulnerable households use migration to manage the risk of rainfall variability and food insecurity. Climate and Development 6: 117.CrossRefGoogle Scholar
Windsor, JE, McVey, JA (2005) Annihilation of both place and sense of place: the experience of the Cheslatta T’En Canadian First Nation within the context of large-scale environmental projects. The Geographical Journal 171: 146165.CrossRefGoogle Scholar
Winemiller, KO, McIntyre, PB, Castello, L, Fluet-Chouinard, E, Giarrizzo, T, Nam, S et al. (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128129.CrossRefGoogle ScholarPubMed
Zeileis, A, Kleiber, C, Krämer, W, Hornik, K (2003) Testing and dating of structural changes in practice. Computational Statistics & Data Analysis 44: 109123.CrossRefGoogle Scholar
Ziv, G, Baran, E, Nam, S, Levin, SA (2012) Trading-off fish biodiversity, food security, and hydropower in the Mekong River basin. Proceedings of the National Academy of Sciences of the United States of America 109: 56095614.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lopes et al. supplementary material

Lopes et al. supplementary material 1

Download Lopes et al. supplementary material(File)
File 448.4 KB
Supplementary material: File

Lopes et al. supplementary material

Lopes et al. supplementary material 2

Download Lopes et al. supplementary material(File)
File 85.4 KB