Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T05:44:09.023Z Has data issue: false hasContentIssue false

Outbreak of nosocomial infections with two different MRSA-strains involved: significance of genomic DNA fragment patterns in strains otherwise difficult to type

Published online by Cambridge University Press:  15 May 2009

C. Cuny
Affiliation:
Robert Koch Institute of the Federal Office of Health, Branch Wernigerode, Burgstraβe 37 D-3700 Wernigerode, Germany
H. -H. Schassan
Affiliation:
Clinics ‘Dr. Horst Schmidt’, Wiesbaden, Germany
W. Witte*
Affiliation:
Robert Koch Institute of the Federal Office of Health, Branch Wernigerode, Burgstraβe 37 D-3700 Wernigerode, Germany
*
* Corresponding author
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Methicillin-resistant Staphylococcus aureus isolates from an outbreak of 17 cases of wound infection in a municipal hospital were typed by conventional methods, phage typing by three sets of phages, reverse phage typing and plasmid profiles, as well as by genomic DNA fragment patterns obtained after Sma-I digestion and pulsed-field electrophoresis. These isolates were non-typable by phages, only some were typable by reverse phage typing and were not uniform in plasmid profile. Only the genomic DNA fragment patterns resulted in a clear discrimination of 2 strains (12 isolates for the first and 7 isolates for the second). Both strains were disseminated in different wards of the same hospital and one strain had obviously spread to another clinic in the same city.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

1.Witte, W, Braulke, C, Cuny, C.. Mehrfachresistente Staphylokokken. Chemotherapie 1992; 1: 1723.Google Scholar
2.Witte, W, Cuny, C, Claus, H. Unrelatedness of multiply resistant Staphylococcus aureus with resistance to methicillin and to quinolones (QR-MRSA) as evident from Sma-I digestion patterns of genomic DNA. Zbl Bakt 1993; 278: 510–7.CrossRefGoogle Scholar
3.Richardson, JF, Chittasobhon, N, Marples, RR. A supplementary phage set for the investigation of methicillin-resistant Staphylococcus aureus. J Med Microbiol 1988; 25: 6774.CrossRefGoogle Scholar
4.Witte, W, Marples, RR, Richardson, JF. Complex typing of methicillin-resistant Staphylococcus aureus (MRSA). Zbl Bakt 1988; A270: 7682.Google ScholarPubMed
5.Blair, J, Williams, REO. Phage typing of staphylococci. Bull WHO 1961; 24: 771–84.Google ScholarPubMed
6.De Saxe, M, Notly, CM. Experience with typing of coagulase-negative staphylococci and micrococci. In: Pulverer, G, Hecko, PB, Peters, G, eds. Phage typing of coagulase-negative staphylococci. Stuttgart, New York: Fischer Verlag, 1979: 4959.Google Scholar
7.Meyer, W. Über die Brauchbarkeit des Kristallviolett-Testes zur Differenzierung von Staphylococcus aureus-Stämmen. Z med Mikrobiol Immunol 1967; 153: 158–68.CrossRefGoogle Scholar
8. DIN-Taschenbuch 222 ‘Medizinische Mikrobiologie und Immunologie’, 1992. Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (auβer Mykobakterien) gegen Chemotherapeutika, Mikodilution, DIN, 58940, Teil 8, Beuth-Verlag, Berlin: 381–4.Google Scholar
9.Witte, W, Grimm, H. Occurrence of quinolone resistance in S. aureus from nosocomial infections. Epidermal Infect 1992; 109: 413–21.CrossRefGoogle Scholar
10.Richardson, JF, Marples, RR, Kerr, GE. Epidemiological typing of Staphylococcus aureus. Zbl Bakt 1991; Suppl 21: 439–45.Google Scholar
11.McGowan, JE, Terry, PM, Huang, TSR, Houk, CC, Davies, J. Nosocomial infections with gentamicin-resistant Staphylococcus aureus: plasmid analysis as an epidemiological tool. J Infect Dis 1979; 140: 864–72.CrossRefGoogle Scholar
12.Archer, GL, Mayhal, CG. Comparison of epidemiological markers used in the investigation of an outbreak of methicillin-resistant Staphylococcus aureus infections. J Clin Microbiol 1983; 18: 395–9.CrossRefGoogle ScholarPubMed
13.Collins, JK, Smith, JS, Kelly, MT. Comparison of phage-typing, plasmid mapping and antibiotic resistance patterns as epidemiologic markers in a nosocomial outbreak of methicillin resistant Staphylococcus aureus infections. Diagn Microbiol Infect Dis 1984; 2: 233–45.CrossRefGoogle Scholar
14.Rhinehart, E, Shlaes, DM, Keys, TF, et al. Nosocomial clonal dissemination of methicillin resistant Staphylococcus aureus: elucidation by plasmid analysis. Arch Int Med 1987; 147: 521–4.CrossRefGoogle ScholarPubMed
15.Goering, RV, Duensing, TD. Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylococci. J Clin Microbiol 1990; 28: 426–9.CrossRefGoogle ScholarPubMed
16.Prevost, G, Pottcher, B, Dahlet, M, Bienntz, M, Mantz, JM, Piemont, Y. Pulsed field gel electrophoresis as a new epidemiological tool for monitoring methicillin-resistant Staphylococcus aureus in an intensive care unit. J Hosp Inf 1991; 17: 255–69.CrossRefGoogle Scholar
17.Wei, MQ, Wang, F, Grubb, WB. Use of counter clamped homogeneous field (CHEF) electrophoresis to type methicillin-resistant Staphylococcus aureus. J Med Microbiol 1992; 36: 172–6.CrossRefGoogle Scholar
18.Rouch, DA, Messerotti, LJ, Loo, LS, Jackson, CA, Skurray, RA. Trimethoprim resistance transposon Tn 4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthease flanked by three copies of IS 257. Molec Microbiol 1989; 3: 161–75.CrossRefGoogle Scholar
19.Casewell, MW, Hill, RLR. Minimal dose requirements for nasal mupirocin and its role in the control of epidemic MRSA. J Hosp Inf 1991; 19 (Suppl. B): 3540.CrossRefGoogle ScholarPubMed