Skip to main content Accesibility Help
×
×
Home

The spatial and temporal determinants of campylobacteriosis notifications in New Zealand, 2001–2007

  • S. E. F. SPENCER (a1), J. MARSHALL (a1), R. PIRIE (a2), D. CAMPBELL (a3), M. G. BAKER (a4) and N. P. FRENCH (a1)...
Summary

Despite recent improvements, New Zealand still has one of the highest per-capita incidence rates of campylobacteriosis in the world. To reduce the incidence, a thorough understanding of the epidemiology of infection is needed. This retrospective analysis of 36 000 notified human cases during a high-risk period between 2001 and 2007 explored the spatial and temporal determinants of Campylobacter notifications at a fine spatial scale in order to improve understanding of the complex epidemiology. Social deprivation was associated with a decreased risk of notification, whereas urban residence was associated with an increased risk. However, for young children rural residence was a risk factor. High dairy cattle density was associated with an increased risk of notification in two of the three regions investigated. Campylobacter notification patterns exhibit large temporal variations; however, few factors were associated with periods of increased risk, in particular temperature did not appear to drive the seasonality in campylobacteriosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The spatial and temporal determinants of campylobacteriosis notifications in New Zealand, 2001–2007
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The spatial and temporal determinants of campylobacteriosis notifications in New Zealand, 2001–2007
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The spatial and temporal determinants of campylobacteriosis notifications in New Zealand, 2001–2007
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence: Dr S. E. F. Spencer, Department of Statistics, University of Warwick, Coventry, CV4 7AL. (Email: s.e.f.spencer@warwick.ac.uk)
References
Hide All
1. ESR. (http://www.surv.esr.cri.nz/). Environmental Science and Research Ltd website. Accessed 12 July 2011.
2. Gormley, FJ, et al. Has chicken played a role in the decline of human campylobacteriosis? Applied and Environmental Microbiology 2008; 74: 383390.
3. French, NP, et al. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environmental Microbiology 2005; 7: 11161126.
4. Mullner, P, et al. Source attribution of food-borne zoonosis in New Zealand: a modified Hald Model. Risk Analysis 2009; 29: 970984.
5. Mullner, P, et al. Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors. Epidemiology and Infection 2010; 138: 13721383.
6. Mullner, P, et al. Assigning the course of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Infection, Genetics and Evolution 2009; 9: 13111319.
7. Mullner, P, et al. Molecular epidemiology of Campylobacter jejuni in a geographically isolated country with a uniquely structured poultry industry. Applied and Environmental Microbiology 2010; 76: 21452154.
8. Wilson, DJ, et al. Tracing the source of campylobacteriosis. PLoS Genetics 2008; 4: e1000203.
9. Kovats, RS, et al. Climate variability and campylobacter infection: an international study. International Journal of Biometeorology 2005; 29: 207214.
10. van Asselt, ED, et al. Campylobacter prevalence in the broiler supply chain in the Netherlands. Poultry Science 2008; 87: 21662172.
11. Hartnack, S, et al. Campylobacter monitoring in German broiler flocks: an explorative time series analysis. Zoonoses Public Health 2009; 56: 117128.
12. Grove-White, DH, et al. Temporal and farm-management-associated variations in the faecal-pat prevalence of Campylobacter jejuni in ruminants. Epidemiology and Infection 2010; 138: 549558.
13. Jore, S, et al. Trends in Campylobacter incidence in broilers and humans in six European countries, 1997–2007. Preventive Veterinary Medicine 2010; 93: 3341.
14. Carrique-Mas, J, et al. Risk factors for domestic sporadic campylobacteriosis among young children in Sweden. Scandinavian Journal of Infectious Diseases 2005; 37: 101110.
15. Ekdahl, K, Normann, B, Andersson, Y. Could flies explain the elusive epidemiology of campylobacteriosis? BMC Infectious Diseases 2005; 5: 11.
16. Nichols, GL. Fly transmission of Campylobacter. Emerging Infectious Diseases 2005; 11: 361364.
17. Gillespie, IA, et al. Demographic determinants for Campylobacter infection in England and Wales: implications for future epidemiological studies. Epidemiology and Infection 2008; 136: 17171725.
18. Sneyd, E, Baker, MG.Infectious diseases in New Zealand: 2002 annual surveillance summary. Technical report, Institute of Environmental Science and Research Limited, New Zealand. 2003. (http://www.surv.esr.cri.nz/PDF_surveillance/AnnualRpt/AnnualSurv/2002AnnualSurvRpt.pdf). Accessed 8 June 2011.
19. Baker, MG, Sneyd, E, Wilson, NA. Is the major increase in notified campylobacteriosis in New Zealand real? Epidemiology and Infection 2007; 135: 163170.
20. Bessell, PR, et al. Geographical determinants of reported human Campylobacter infections in Scotland. BMC Health 2010; 10: 423430.
21. Williman, J, Cressey, P, Pirie, R.Annual report concerning foodborne disease in New Zealand 2007. Technical report, Institute of Environmental Science and Research Limited, New Zealand. 2008 (http://www.foodsafety.govt.nz/elibrary/industry/Annual_Report_Concerning-Science_Research.pdf). Accessed 23 January 2011.
22. McTavish, SM, et al. Wide geographical distribution of internationally rare Campylobacter clones within New Zealand. Epidemiology and Infection 2008; 136: 12441252.
23. Wilson, NA.A systematic review of the aetiology of human campylobacteriosis in New Zealand. Technical report, Food Safety Authority of New Zealand, 2005. (http://www.foodsafety.govt.nz/elibrary/industry/Systematic_Review-Literature_Evidence.pdf). Accessed 12 July 2011.
24. Spencer, SEF, et al. The detection of spatially localised outbreaks in campylobacteriosis notification data. Spatial and Spatio-temporal Epidemiology 2011; 2: 173183.
25. Bi, P, et al. Weather and notified Campylobacter infections in temperate and sub-tropical regions of Australia: An ecological study. Journal of Infection 2008; 57: 317323.
26. Hearnden, M, et al. The regionality of campylobacteriosis seasonality in New Zealand. International Journal of Environmental Health Research 2003; 13: 337348.
27. White, ANJ, et al. Environmental Determinants of campylobacteriosis risk in Philadelphia from 1994 to 2007. EcoHealth 2009; 6: 200209.
28. Statistics New Zealand. New Zealand: an urban/rural profile. Wellington Statistics New Zealand, 2004 (http://www.statisticsnz.govt.nz/Publications/BusinessPerformanceEnergyAndAgriculture/urban-rural-profile-update.aspx). Accessed 12 July 2011.
29. Lake, RJ, et al. The disease pyramid for acute gastrointestinal illness in New Zealand. Epidemiology and Infection 2010; 138: 14681471.
30. Diggle, P, et al. On-line monitoring of public health surveillance data. In: Brookmeyer, R, Stroup, DF, eds. Monitoring the Health of Populations . Oxford University Press, 2002.
31. Besag, J, York, J, Mollié, A. Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 1991; 43: 121.
32. Knorr-Held, L, Richardson, S. A hierarchical model for space-time surveillance data on meningococcal disease incidence. Journal of the Royal Statistical Society (Applied Statistics) 1999; 52: 169183.
33. Salmond, C, et al. NZDep2006 index of deprivation: user's manual. Wellington Department of Public Health, University of Otago, 2007 (http://www.moh.govt.nz/moh.nsf/Files/phi-users-manual/$file/phi-users-manual.pdf).
34. Statistics New Zealand. 2006 census (http://www.stats.govt.nz/Census/2006CensusHomePage.aspx). Accessed 12 July 2011.
35. Nicol, C, et al. Diagnostic and public health management practices of foodborne bacterial diseases. Technical report, Institute of Environmental Science and Research Limited, New Zealand. 2011 (http://www.foodsafety.govt.nz/elibrary/industry/diagnostic-public-health-research-projects/FW1044_Diagnostic_practices.pdf). Accessed: 24 September 2011.
36. Rind, E, Pearce, J. The spatial distribution of campylobacteriosis in New Zealand, 1997–2005. Epidemiology and Infection 2010; 138: 13591371.
37. Nelson, W. Campylobacteriosis in New Zealand. Epidemiology and Infection 2010; 138: 17621764.
38. Gabriel, E, et al. Spatio-temporal epidemiology of Camylobacter jejuni enteritis, in an area of Northwest England, 2000–2002. Epidemiology and Infection 2010; 138; 13841390.
39. Wheeler, JG, et al. Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance. British Medical Journal 1999; 318: 10461050.
40. Eberhart-Phillips, J, et al. Campylobacteriosis in New Zealand: results of a case-control study. Journal of Epidemiology and Community Health 1997; 51: 686691.
41. Strachan, NJC, et al. Attribution of Campylobacter infections in Northeast Scotland to specific sources by use of multilocus sequence typing. Journal of Infectious Diseases 2009; 199: 12051208.
42. Kabore, H, et al. Association between potential zoonotic enteric infections in children and environmental risk factors in Quebec, 1999–2006. Zoonoses and Public Health 2010: 57; e195–205.
43. Gilpin, BJ, et al. The transmission of thermotolerant Campylobacter spp. to people living or working on dairy farms in New Zealand. Zoonoses Public Health 2008; 55: 352360.
44. Dale, K, et al. Reported waterborne outbreaks of gastrointestinal disease in Australia are predominantly associated with recreational exposure. Australian and New Zealand Journal of Public Health 2010; 34: 527530.
45. Karagiannis, I, et al. A waterborne Campylobacter jejuni outbreak on a Greek island. Epidemiology and Infection 2010; 138: 17261734.
46. Havelaar, AH, et al. Immunity to Campylobacter: its role in risk assessment and epidemiology. Critical Reviews in Microbiology 2009; 35: 122.
47. Ikram, R, et al. A case control study to determine risk factors for campylobacter infection in Christchurch in the summer of 1992–3. New Zealand Medical Journal 1994; 107: 430432.
48. Allerberger, F, et al. Barbecued chicken causing a multi-state outbreak of Campylobacter jejuni enteritis. Infection 2003; 31: 1923.
49. Kapperud, G, et al. Factors associated with increased and decreased risk of Campylobacter infection: a prospective case-control study in Norway. American Journal of Epidemiology 2003; 158: 234242.
50. Neimann, J, et al. A case-control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiology and Infection 2003; 130: 353366.
51. Doorduyn, Y, et al. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiology and Infection 2010; 138: 13911404.
52. Rushton, SP, et al. Campylobacter in housed broiler chickens: a longitudinal study of risk factors. Epidemiology and Infection 2009; 137: 10991110.
53. Patrick, ME, et al. Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and Environmental Microbiology 2004; 70: 74747480.
54. Wallace, JS, et al. Seasonality of thermophilic Campylobacter populations in chickens. Journal of Applied Microbiology 1997; 82: 219224.
55. Ellis-Iversen, J, et al. Risk factors for Campylobacter colonisation during rearing of broiler flocks in Great Britain. Preventive Veterinary Medicine 2009; 89: 178184.
56. Hansson, I, et al. Correlations between Campylobacter spp. prevalence in the environment and broiler flocks. Journal of Applied Microbiology 2007; 103: 640649.
57. Dairy New Zealand. New Zealand Dairy Statistics 2009–2010 (http://www.lic.co.nz/lic_Publications.cfm).
58. Heymann, DL (ed.). Control of Communicable Diseases Manual. Washington, DC: American Public Health Association, 2008.
59. Lim, E, Pirie, R.EpiSurv Data Quality Report 2009. Institute of Environmental Science and Research Ltd (ESR): Wellington, New Zealand, 2010.
60. Sears, A, et al. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerging Infectious Diseases 2011; 17: 10071015.
61. Sheppard, SK, et al. Campylobacter genotyping to determine the source of human infection. Clinical Infectious Diseases 2009; 48: 10721078.
62. Knorr-Held, L. Conditional prior proposals in dynamic models. Scandinavian Journal of Statistics 1999; 26: 129144.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed