Skip to main content

Temporal and farm-management-associated variation in faecal pat prevalence of Arcobacter spp. in ruminants

  • D. H. GROVE-WHITE (a1), A. J. H. LEATHERBARROW (a2), P. J. CRIPPS (a1), P. J. DIGGLE (a3) and N. P. FRENCH (a4)...

In a 2-year longitudinal study of adult animals on 15 dairy farms and four sheep farms in Lancashire, UK, Arcobacter spp. were isolated from all farms although not at every sampling occasion. Faecal samples were collected and cultured using standard techniques for isolation of campylobacters. Assignment to species was via PCR assays. Apparent prevalence of Arcobacter spp. was higher in dairy cattle compared to sheep (40·1% vs. 8%, P < 0·001) and in housed cattle compared to cattle at pasture (50·1% vs. 20·9%, P < 0·001). This was reflected in the higher prevalence observed in herds that were housed (n = 4) all year compared to herds that grazed cattle on pasture in the summer and housed cattle in the winter (n = 11) (55·5% vs. 36%, P < 0·001). In the case of sheep, peak prevalence was observed in autumn with increased prevalence also being associated with improving pasture quality. There was an apparent inverse association between the faecal pat prevalence of Arcobacter spp. and Campylobacter jejuni although this may in part be an artefact of laboratory test method sensitivity, whereby a relative increase in the frequency of one bacterial species would reduce the sensitivity of detecting the other.

Corresponding author
* Author for correspondence: Dr D. H. Grove-White, School of Veterinary Science, Leahurst, Chester High Road, Neston, Wirral CH64 7TE, UK. (Email:
Hide All
1. Ellis, WA, et al. Isolation of Spirillum/Vibrio-like organisms from bovine foetuses. Veterinary Record 1977; 100: 451452.
2. Hoa, TK, et al. Arcobacter, what is known and unknown about a potential foodborne zoonotic agent. Veterinary Microbiology 2006; 115: 113.
3. Wesley, IV, et al. Faecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. Applied and Environmental Microbiology 2000; 66: 19942000.
4. Van Driessche, E, et al. Isolation of Arcobacter species from animal faeces. FEMS Microbiological Letters 2003; 229: 243248.
5. Rice, EW, et al. Isolation of Arcobacter butzleri from ground water. Letters in Applied Microbiology 1999; 28: 3135.
6. Scullion, R, et al. Prevalence of Arcobacter spp. in raw milk and retail meats in Northern Ireland. Journal of Food Protection 2006; 69: 19861990.
7. De, Smet S, et al. Small ruminants as carriers of the emerging foodborne pathogen Arcobacter on small and medium farms. Small Ruminant Research 2011; 97: 124129.
8. Logan, EF, et al. Mastitis in dairy cows associated with an aerotolerant campylobacter. Veterinary Record 1982; 110: 229230.
9. Vandenberg, O, et al. Arcobacter species in humans. Emerging Infectious Disease 2004; 10: 18631867.
10. Prouze-Mauleon, VL, et al. Arcobacter butzeleri: underestimated enteropathogen. Emerging Infectious Disease 2006; 12: 307309.
11. Houf, K, Stephan, L. Isolation and characterisation of the emerging foodborne pathogen Arcobacter from human stool. Journal of Microbiological Methods 2007; 68: 408413.
12. Lerner, J, et al. Severe diarrhoea associated with Arcobacter butzeleri . European Journal of Clinical Microbiology and Infectious Disease 1994; 13: 660662.
13. Wybo, I, et al. Isolation of Arcobacter skirrowii from a patient with chronic diarrhea. Journal of Clinical Microbiology 2004; 42: 18511852.
14. Vandamme, P, et al. Outbreak of recurrent abdominal cramps associated with Arcobacter butzeleri in an Italian school. Journal of Clinical Microbiology 1992; 30: 23352337.
15. Lappi, V, et al. An outbreak of foodborne illness among attendees of a wedding reception in Wisconsin likely caused by Arcobacter butzeleri . Foodborne Pathogens and Disease 2013; 10: 250255.
16. Tam, CC, et al. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 2012; 61: 6977.
17. Vellinga, A, Van, Loock F. The dioxin crisis as experiment to determine poultry-related Campylobacter enteritis. Emerging Infectious Disease 2002; 8: 1922.
18. Tam, CC, et al. Chicken consumption and use of acid-suppressing medication as risk factors for Campylobacter enteritis, England. Emerging Infectious Disease 2009; 15: 14021408.
19. Dominques, AR, et al. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection 2012; 140: 970981.
20. Wilson, DJ, et al. Tracing the source of campylobacteriosis. PLoS Genetics 2008; 4: e1000203.
21. Mullner, P, et al. Assigning the source of human campylobacteriosis in New Zealand: A comparative genetic and epidemiological approach. Infection, Genetics and Evolution 2009; 9: 13111319.
22. Sopwith, W, et al. Enhanced surveillance of Campylobacter infection in the North West of England 1997–1999. Journal of Infection 2003; 46: 3545.
23. Meldrum, RJ, et al. The seasonality of human Campylobacter infection and Campylobacter isolates from fresh retail chicken. Epidemiology and Infection 2003: 133: 4952.
24. Stanley, KN, et al. The seasonal variation of thermophillic campylobacters in beef cattle, dairy cattle and calves. Journal of Applied Microbiology 1998; 85: 472480.
25. Grove-White, DH, et al. Temporal and farm-management-associated variation in the faecal pat prevalence of Campylobacter jejuni in ruminants. Epidemiology and Infection 2010; 138: 549558.
26. Hughes, J. A system for assessing cow cleanliness. In Practice 2001; 23: 517524.
27. Grove-White, DH. Rumen healthcare in the dairy cow. In Practice 2004; 26: 8895.
28. Gonzalez, I, et al. Development of a combined PCR-culture technique for the rapid detection of Arcobacter spp. in chicken meat. Letters in Applied Microbiology 2000; 30: 207212.
29. Wang, G, et al. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis and C. fetus subsp. fetus . Journal of Clinical Microbiology 2002; 40: 47444747.
30. Linton, D, et al. Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology; 1996: 147: 707718.
31. Gonzalez, I, et al. Species Identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. Journal of Clinical Microbiology 1997; 35: 759763.
32. Kirkwood, BR, Sterne, JAC. Essential Medical Statistics, 2nd edn. Oxford: Blackwell Science, 2003, pp. 341354.
33. Stolwijk, AM, et al. Studying seasonality by using sine and cosine functions in regression analysis. Journal of Epidemiology and Community Health 1999; 53: 235238.
34. Merga, JY, et al. Comparison of Arcobacter isolation methods, and diversity of Arcobacter spp. in Cheshire, United Kingdom. Applied and Environmental Microbiology 2011; 77: 16461650.
35. Chamberlain, AT, Wilkinson., Feeding the Dairy Cow, 1st edn. Lincoln: Chalcombe Publications, 1996, pp. 216.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 160 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.