Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-15T05:18:25.385Z Has data issue: false hasContentIssue false

Generic existence result for an eigenvalue problem with rapidly growing principal operator

Published online by Cambridge University Press:  15 October 2004

Vy Khoi Le*
Affiliation:
Department of Mathematics and Statistics, University of Missouri–Rolla, MO 65401, USA; vy@umr.edu.
Get access

Abstract

We consider the eigenvalue problem $$ \begin{array}{l} \displaystyle-{\rm div} (a(|\nabla u |)\nabla u) = \lambda g(x, u) \;\mbox{ in } \Omega u = 0 \;\mbox{ on } \partial\Omega , \end{array} $$ in the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all λ > 0 are eigenvalues.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Adams, Sobolev spaces. Academic Press, New York (1975).
Ambrosetti, A. and Rabinowitz, P., Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. CrossRef
Chang, K.C., Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102-129. CrossRef
F.H. Clarke, Optimization and nonsmooth analysis. SIAM, Philadelphia (1990).
Clément, P., García-Huidobro, M., Manásevich, R. and Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. 11 (2000) 33-62. CrossRef
Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Diff. Equations 10 (1971) 507-528. CrossRef
Donaldson, T. and Trudinger, N., Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8 (1971) 52-75. CrossRef
García-Huidobro, M., Le, V.K., Manásevich, R. and Schmitt, K., On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlinear Diff. Eq. Appl. 6 (1999) 207-225. CrossRef
Gossez, J.P., Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Amer. Math. Soc. 190 (1974) 163-205. CrossRef
Gossez, J.P. and Manásevich, R., On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 132 (2002) 891-909. CrossRef
Gossez, J.P. and Mustonen, V., Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. 11 (1987) 379-392. CrossRef
Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\bf {R}}^N}$ . Proc. Roy. Soc. Edinb. A 129 (1999) 787-809. CrossRef
Jeanjean, L. and Toland, J.F., Bounded Palais-Smale mountain-pass sequences. C.R. Acad. Sci. Paris Ser. I Math. 327 (1998) 23-28. CrossRef
Kourogenis, N.C. and Papageorgiou, N.S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Ser. A) 69 (2000) 245-271. CrossRef
M.A. Krasnosels'kii and J. Rutic'kii, Convex functions and Orlicz spaces. Noorhoff, Groningen (1961).
A. Kufner, O. John and S. Fučic, Function spaces. Noordhoff, Leyden (1977).
Le, V.K., A global bifurcation result for quasilinear eliptic equations in Orlicz-Sobolev space. Topol. Methods Nonlinear Anal. 15 (2000) 301-327. CrossRef
Le, Nontrivial, V.K. solutions of mountain pass type of quasilinear equations with slowly growing principal parts. J. Diff. Int. Eq. 15 (2002) 839-862.
Le, V.K. and Schmitt, K., Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J. London Math. Soc. 62 (2000) 852-872. CrossRef
Mustonen, V. and Tienari, M., An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 129 (1999) 153-163. CrossRef
Mustonen, V., Remarks on inhomogeneous elliptic eigenvalue problems. Part. Differ. Equ. Lect. Notes Pure Appl. Math. 229 (2002) 259-265.
Z. Naniewicz and P.D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York (1995).
Rabinowitz, P., Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3 (1973) 162-202. CrossRef
Struwe, M., Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Brasil Mat. 20 (1990) 49-58. CrossRef
M. Struwe, Variational methods. 2nd ed., Springer, Berlin (1991).
Tienari, M., Ljusternik-Schnirelmann theorem for the generalized Laplacian. J. Differ. Equations 161 (2000) 174-190. CrossRef