Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T13:21:47.074Z Has data issue: false hasContentIssue false

Error estimates in the fast multipole method for scattering problems Part 1: Truncation of the Jacobi-Anger series

Published online by Cambridge University Press:  15 March 2004

Quentin Carayol
Affiliation:
Dassault Aviation, 78, quai Marcel Dassault, Cedex 300, 92552 Saint-Cloud Cedex, France, quentin.carayol@dassault-aviation.fr.
Francis Collino
Affiliation:
CERFACS, 42 avenue G. Coriolis, 31057 Toulouse, France, Collino@cerfacs.fr.
Get access

Abstract

We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave ${\rm e}^{i \hat{s} \cdot \vec{v}}$ in terms of spherical harmonics $\{ Y_{\ell, m}(\hat{s}) \}_{|m|\le \ell\le \infty} $. We consider the truncated series where the summation is performed over the $(\ell,m)$'s satisfying $|m| \le \ell \le L$. We prove that if $v = |\vec{v}|$ is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies $L+\frac{1}{2} \simeq v + C W^{\frac{2}{3}}(K \epsilon^{-\delta} v^\gamma )\, v^{\frac{1}{3}}$ where W is the Lambert function and $C\,, K, \, \delta, \, \gamma$ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Dover, New York (1964).
Amini, S. and Profit, A., Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 2333. CrossRef
Q. Carayol, Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. Thesis, Université Paris VI Pierre et Marie Curie, Paris (2002).
Cessenat, O. and Després, B., Application of an ultra weak variational formulation of elliptic pdes to the 2D Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255299. CrossRef
W.C. Chew, J.M. Jin, E. Michielssen and J.M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
Coifman, R., Rokhlin, V. and Greengard, S., The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 712. CrossRef
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992).
Corless, R., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E., On the Lambert W function. Adv. Comput. Math. 5 (1996) 329359. CrossRef
Darve, E., The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98128 (electronic). CrossRef
Darve, E., The fast multipole method: Numerical implementation. J. Comput. Phys. 160 (2000) 196240. CrossRef
E. Darve and P. Havé, Efficient fast multipole method for low frequency scattering. J. Comput. Phys. (to appear).
Epton, M.A. and Dembart, B., Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865897. CrossRef
I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 5th edn., Academic Press (1994).
Koc, S., Song, J. and Chew, W.C., Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906921 (electronic). CrossRef
L. Lorch, Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237–240.
Lorch, L., Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237–240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. CrossRef
J.C. Nédélec, Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001).
Ohnuki, S. and Chew, W.C., Numerical accuracy of multipole expansion for 2-d mlfma. IEEE Trans. Antennas Propagat. 51 (2003) 18831890. CrossRef
Rahola, J., Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333358. CrossRef
G.N. Watson, Bessel functions and Kapteyn series. Proc. London Math. Soc. (1916) 150–174.
G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press (1966).