Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T07:09:14.226Z Has data issue: false hasContentIssue false

Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Published online by Cambridge University Press:  15 November 2003

Gerd Kunert
Affiliation:
Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany. gkunert@mathematik.tu-chemnitz.de.
Serge Nicaise
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, MACS, B.P. 311, 59304 Valenciennes Cedex, France. snicaise@univ-valenciennes.fr.
Get access

Abstract

We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000).
Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999).
Babuška, I., Strouboulis, T. and Upadhyay, C.S., A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg. 114 (1994) 307378. CrossRef
Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K. and Copps, K., Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37 (1994) 10731123. CrossRef
Bartels, S. and Carstensen, C., Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp. 71 (2002) 971994. CrossRef
Bramble, J.H., Pasciak, J.E. and Steinbach, O., On the stability of the L2-projection in ${H}^1(\omega)$ . Math. Comp. 71 (2002) 147156. CrossRef
Carstensen, C., Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1 -stability of the L2 -projection onto finite element spaces. Math. Comp. 71 (2002) 157163. CrossRef
Carstensen, C. and Bartels, S., Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945969. CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
Dobrowolski, M., Gräf, S. and Pflaum, C., On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 3645.
G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html
Kunert, G., An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471490, DOI 10.1007/s002110000170. CrossRef
Kunert, G., A local problem error estimator for anisotropic tetrahedral f inite element meshes. SIAM J. Numer. Anal. 39 (2001) 668689. CrossRef
Kunert, G., A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal. 21 (2001) 503523.
Kunert, G., Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237259. CrossRef
G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01–20, TU Chemnitz, July 2001. Also http://archiv.tu-chemnitz.de/pub/2001/0059/index.html
Kunert, G. and Verfürth, R., Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283303, DOI 10.1007/s002110000152. CrossRef
L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian.
Raugel, G., Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791A794.
Rodriguez, R., Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE 10 (1994) 625635. CrossRef
Roos, H.G. and Linß, T., Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (2001) 11691179. CrossRef
Siebert, K.G., An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373398. CrossRef
Steinbach, O., On the stability of the L2-projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367379. CrossRef
R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998).
Zienkiewicz, O.C. and Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337357. CrossRef
Zienkiewicz, O.C. and Zhu, J.Z., The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207224. CrossRef