Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T08:33:00.581Z Has data issue: false hasContentIssue false

Atomic diffusion and observations of pulsating A stars

Published online by Cambridge University Press:  19 December 2013

D.W. Kurtz*
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK
Get access

Abstract

Atomic diffusion – important in many contexts in stellar astrophysics and an important thread running through this meeting – is most spectacularly observable in the atmospheres of some A stars. The magnetic Ap stars and the non-magnetic Am stars show directly abundance anomalies caused by gravitational settling and radiative levitation. Over the last decade spectroscopic studies have begun to provide maps of abundance distributions in the magnetic Ap stars in three dimensions. Interestingly, high radial overtone p-mode pulsations in roAp stars have also given three-dimensional views of the stellar atmospheres with studies of rotational and line profile variations of pulsation amplitudes and phases. These detailed looks at the effects of microscopic atmospheric changes in the strongly non-LTE and magnetic upper atmospheric layers of Ap stars provide perhaps the most exciting challenge to atomic diffusion theory in terms of detailed explanation and prediction. Am stars were at one time thought not to pulsate because of gravitational settling of He from the He ii ionization zone that provides the κ-mechanism driving for δ Sct pulsations in A stars. In the last few years we have found with SuperWASP and Kepler observations that many Am stars do pulsate. More than half of all A stars pulsate at Kepler micromagnitude precision, yet there is a subset of A stars that truly do not pulsate at that level. Are these Am stars with the strongest signature of atomic diffusion? Is atomic diffusion the reason for the pulsational stability of these stars? The answers are not yet known.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D.W., 2010, Asteroseismol., A&A Library, ISBN 978-1-4020-5178-4 (Springer Science+Business Media B.V.)
Alecian, G., & Vauclair, S., 1981, A&A, 101, 16
Asplund, M., 2005, ARA&A, 43, 481CrossRef
Balmforth, N.J., Cunha, M.S., Dolez, N., Gough, D.O., & Vauclair, S., 2001, MNRAS, 323, 362CrossRef
Cunha, M.S., Aerts, C., Christensen-Dalsgaard, J., et al., 2007 A&ARv, 14, 217
Elkin, V.G., Kurtz, D.W., & Mathys, G., 2005, MNRAS, 364, 864CrossRef
Freyhammer, L.M., Kurtz, D.W., Elkin, V.G., et al., 2009, MNRAS, 396, 325CrossRef
Hubrig, S., Nesvacil, N., Schöller, M., et al., 2005, A&A, 440, L37
Kochukhov, O., Drake, N.A., Piskunov, N., & de la Reza, R., 2004, A&A, 424, 935
Kurtz, D.W., Elkin, V.G., & Mathys, G., 2005, EAS Publications Series, 17, 91CrossRef
Murphy, S.J., Grigahcène, A., Niemczura, E., Kurtz, D.W., & Uytterhoeven, K., 2012, MNRAS, 427, 1418CrossRef
Nesvacil, N., Shulyak, D., Ryabchikova, T.A., et al., 2013, A&A, 552, A28
Saio, H., 2005, MNRAS, 360, 1022CrossRef
Smalley, B., Kurtz, D.W., Smith, A.M.S., et al., 2011, A&A, 535, A3
Sousa, J.C., & Cunha, M.S., 2011, MNRAS, 414, 2576CrossRef
Stift, M.J., & Alecian, G., 2009, MNRAS, 394, 1503CrossRef
Stift, M.J., & Alecian, G., 2012, MNRAS, 425, 2715CrossRef
Théado, S., Vauclair, S., & Cunha, M.S., 2005, A&A, 443, 627
Vauclair, S., & Dolez, N., 1990, Progr. Seismol. Sun Stars, 367, 399CrossRef
Vauclair, S., Hardorp, J., & Peterson, D.M., 1979, ApJ, 227, 526CrossRef
Vauclair, S., & Théado, S., 2004, A&A, 425, 179
Vauclair, S., & Vauclair, G., 1982, ARA&A, 20, 37CrossRef
Vauclair, G., Vauclair, S., & Pamjatnikh, A., 1974, A&A, 31, 63PubMed