Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-17T07:21:03.122Z Has data issue: false hasContentIssue false

Cooling-Induced Structures in Collapsar Accretion Disks

Published online by Cambridge University Press:  22 July 2013

A. Batta
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264, Ciudad Universitaria, D.F., México. e-mail: abatta@astro.unam.mx; wlee@astro.unam.mx ;
W.H. Lee
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264, Ciudad Universitaria, D.F., México. e-mail: abatta@astro.unam.mx; wlee@astro.unam.mx ;
Get access

Abstract

The collapse of massive rotating stellar cores and the associated accretion is thought to power long Gamma ray bursts. The physical conditions make neutrino emission the main cooling agent in the flow. We have carried out an initial set of calculations of the collapse of rotating polytropic cores in three dimensions, making use of a pseudo-relativistic potential and a simplified cooling prescription. We focus on the effects of self gravity and cooling on the overall morphology and evolution of the flow for a given rotation rate in the context of the collapsar model. For the typical cooling times expected in such a scenario we observe the appearance of strong instabilities on a time scale tcool following disk formation. Such instabilities and their gravitational interaction with the black hole produce significant variability in the obtained accretion rates, which would translate into luminosity variations when a more realistic neutrino cooling and luminosity scheme is implemented in future work.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

López-Cámara, D., Lee, W.H., & Ramirez-Ruiz, E., 2009, ApJ, 692, 804 CrossRef
MacFadyen, A.I., & Woosley, S.E., 1999, ApJ, 524, 262 CrossRef
Narayan, R., Piran, T., & Kumar, P., 2001, ApJ, 557, 949 CrossRef
Paczynski, B., & Wiita, P.J., 1980, A&A, 88, 23
Proga, D., MacFadyen, A.I., Armitage, P., & Begelman, M., 2003, ApJ, 599, L5 CrossRef
Rockefeller, G., Fryer, C.L., & Li, H., 2006 [arXiv:astro-ph/0608028]
Taylor, P.A., Miller, J.C., & Podsiadlowski, P., 2011, MNRAS, 410, 4, 2385 CrossRef
Woosley, S.E., 1993, ApJ, 405, 273 CrossRef
Woosley, S.E., & Bloom, J.S., 2006, ARA&A, 44
Springel, V., 2005, MNRAS, 364, 1105 CrossRef
Zurek, W.H., & Benz, W., 1986, ApJ, 308, 123 CrossRef