Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T11:17:48.433Z Has data issue: false hasContentIssue false

Toward Realistic Galaxy Formation by Numerical Simulations

Published online by Cambridge University Press:  21 April 2007

K. Wada*
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
T.R. Saitoh
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
H. Daisaka
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
C.A. Norman
Affiliation:
Johns Hopkins University, Baltimore, MD 21218, USA
Get access

Abstract

In most of numerical simulations of spiral galaxy formation, mass/spatial resolution is ~ 105-6M and kpc or sub-kpc, therefore inhomogeneous structure of the ISM in galaxies is not resolved. This is the most serious defect in simulating star formation and its feedback during galaxy formation/evolution. Here we show an intrinsic structures of the ISM using 3-D high resolution hydrodynamic simulations of galactic disks. We show that the PDFs in globally stable, inhomogeneous ISM in galactic disks are well fitted by a single log-normal function over a wide density range. The dispersion of the log-normal PDF (LN-PDF) is larger for more gas-rich systems. Using the LN-PDF, we give a generalized version of Schmidt-Kennicutt law, i.e. SFR as a function of average gas density, a critical local density for star formation, and star formation efficiency. We also introduce our new project, “Project Milky Way”, in which we aim to resolve properly the cold, dense ISM, as found in above simulations, by ultra-high resolution during galaxy formation. We are planning to construct a special cluster for simulating formation of “Milky Way” using the next generation GRAPE.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)