Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T19:58:08.575Z Has data issue: false hasContentIssue false

MELATONIN AND ITS ROLE IN NEURODEVELOPMENT DURING THE PERINATAL PERIOD: A REVIEW

Published online by Cambridge University Press:  07 August 2013

K. JANE HASSELL
Affiliation:
Neonatology, Institute for Women's Health, University College London, London, UK.
RUSSEL J REITER
Affiliation:
Department of Cellular and Structural Biology, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA.
NICOLA J. ROBERTSON*
Affiliation:
Neonatology, Institute for Women's Health, University College London, London, UK.
*
Professor Nicola J. Robertson, FRCPCH, PhD, Institute for Women's Health, 74 Huntley Street, Second Floor, Room 239, University College London, London WC1E 6HX, UK. Email: n.robertson@ucl.ac.uk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tan, DX, Hardeland, R, Manchester, LC, Paredes, SD, Korkmaz, A, Sainz, RM, et al.The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2010 85 (3): 607–23.Google Scholar
2Pandi-Perumal, SR, Srinivasan, V, Maestroni, GJ, Cardinali, DP, Poeggeler, B, Hardeland, R. Melatonin: nature's most versatile biological signal? FEBS J 2006 273 (13): 2813–38.Google Scholar
3Reiter, RJ, Tan, DX, Rosales-Corral, S, Manchester, LC. The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 2013 13 (3): 373–84.Google Scholar
4Lerner, AB, Case, JD, Takahashi, Y. Isolation of melatonin, a pineal factor that lightens melanocytes. J Am Chem Soc 1958 80: 2587–92.Google Scholar
5Stehle, JH, Saade, A, Rawashdeh, O, Ackermann, K, Jilg, A, Sebestény, T, et al.A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011 51 (1): 1743.Google Scholar
6Reiter, RJ, Tan, DX, Fuentes-Broto, L. Melatonin: a multitasking molecule. Prog Brain Res 2010 181: 127–51.Google Scholar
7Claustrat, B, Brun, J, Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005 9 (1): 1124.Google Scholar
8Parfitt, AG, Klein, DC. Sympathetic nerve endings in the pineal gland protect against acute stress-induced increase in N-acetyltransferase (EC 2.3.1.5.) activity. Endocrinology 1976 99 (3): 840–51.Google Scholar
9Ma, X, Idle, JR, Krausz, KW, Gonzalez, FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 2005 33 (4): 489–94.Google Scholar
10Lynch, HJ, Wurtman, RJ, Moskowitz, MA, Archer, MC, Ho, MH. Daily rhythm in human urinary melatonin. Science 1975 187 (4172): 169–71.Google Scholar
11Tan, DX, Manchester, LC, Terron, MP, Flores, LJ, Reiter, RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007 42 (1): 2842.Google Scholar
12Galano, A, Tan, DX, Reiter, RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 2011 51 (1): 116.Google Scholar
13Galano, A, Tan, DX, Reiter, RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013 54 (3): 245–57.Google Scholar
14Skinner, DC, Malpaux, B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 1999 140 (10): 4399–405.Google Scholar
15Tan, DX, Manchester, LC, Sanchez-Barcelo, E, Mediavilla, MD, Reiter, RJ. Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr Neuropharmacol 2010 8 (3): 162–7.Google Scholar
16Hardeland, R, Tan, DX, Reiter, RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 2009 47 (2): 109–26.Google Scholar
17Ressmeyer, AR, Mayo, JC, Zelosko, V, Sáinz, RM, Tan, DX, Poeggeler, B, et al.Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 2003 8 (4): 205–13.Google Scholar
18Reiter, RJ, Rosales-Corral, S, Manchester, LC, Tan, DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci 2013 14 (4): 7231–72.Google Scholar
19Reiter, RJ. The melatonin rhythm: both a clock and a calendar. Experimentia 1993 49 (8): 654–64.Google Scholar
20Tamura, H, Takasaki, A, Taketani, T, Tanabe, M, Kizuka, F, Lee, L, et al.Melatonin as a free radical scavenger in the ovarian follicle. Endocr J 2013 60 (1): 113.Google Scholar
21Tamura, H, Takasaki, A, Miwa, I, Taniguchi, K, Maekawa, R, Asada, H, et al.Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008 44 (3): 280–7.Google Scholar
22Lanoix, D, Beghdadi, H, Lafond, J, Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res 2008 45 (1): 5060.Google Scholar
23Sainz, RM, Mayo, JC, Rodriguez, C, Tan, DX, Lopez-Burillo, S, Reiter, RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 2003 60 (7): 1407–26.Google Scholar
24Lanoix, D, Lacasse, AA, Reiter, RJ, Vaillancourt, C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol 2012 348 (1): 111.Google Scholar
25Tamura, H, Takayama, H, Nakamura, Y, Reiter, RJ, Sugino, N. Fetal/placental regulation of maternal melatonin in rats. J Pineal Res 2008 44 (3): 335–40.Google Scholar
26Tamura, H, Nakamura, Y, Korkmaz, A, Manchester, LC, Tan, DX, Sugino, N, et al.Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009 92 (1): 328–43.Google Scholar
27Sharkey, JT, Puttaramu, RA, Word, R, Olcese, J. Melatonin synergizes with oxytocin to enhance contractility of human myometrial smooth muscle cells. J Clin Endocrinol Metab 2009 94 (2): 421–7.Google Scholar
28Gozeri, E, Celik, H, Ozercan, I, Gurates, B, Polat, SA, Hanay, F. The effect of circadian rhythm changes on fetal and placental development (experimental study). Neuro Endocrinol Lett 2008 29 (1): 8790.Google Scholar
29Lanoix, D, Guérin, P, Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res 2012 53 (4): 417–25.Google Scholar
30Lemley, CO, Meyer, AM, Camacho, LE, Neville, TL, Newman, DJ, Caton, JS, et al.Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2012 302: R45467.Google Scholar
31Lemley, CO, Camacho, LE, Vonnahme, KA. Uterine infusion of melatonin or melatonin receptor antagonist alters ovine feto-placental hemodynamics during mid-gestation. Biol Reprod 2013. In press, published on June 19, 2013 as doi:10.1095/biolreprod.113.109074.Google Scholar
32Richter, HG, Hansell, JA, Raut, S, Giussani, DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. Pineal Res 2009 46: 357–64.Google Scholar
33Okatani, Y, Wakatsuki, A, Watanabe, K, Ikenoue, N, Fukaya, T. Melatonin inhibits vasospastic action of oxidized low-density lipoprotein in human umbilical arteries. J. Pineal Res 2000 2: 7480.Google Scholar
34Serón-Ferré, M, Mendez, N, Abarzua-Catalan, L, Vilches, N, Valenzuela, FJ, Reynolds, H, et al.Circadian rhythms in the fetus. Mol Cell Endocrinol 2012 359 (1): 6875.Google Scholar
35Reppert, SM, Schwartz, WJ. Functional activity of the suprachiasmatic nuclei in the fetal primate. Neurosci Lett 1984 46 (2): 145–9.Google Scholar
36Mirmiran, M, Maas, YG, Ariagno, RL. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev. 2003 7 (4): 321–34.Google Scholar
37Liu, C, Reppert, SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000 25 (1): 123–8.Google Scholar
38Reppert, SM, Weaver, DR. Coordination of circadian timing in mammals. Nature 2002 418 (6901): 935–41.Google Scholar
39Panda, S, Antoch, MP, Miller, BH, Su, AI, Schook, AB, Straume, M, et al.Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002 109 (3): 307–20.Google Scholar
40Dallmann, R, Viola, AU, Tarokh, L, Cajochen, C, Brown, SA. The human circadian metabolome. Proc Natl Acad Sci 2012 109 (7): 2625–9.Google Scholar
41Rivkees, SA, Hao, H. Developing circadian rhythmicity. Semin Perinatol 2000 24 (4): 232–42.Google Scholar
42Johnston, JD, Schuster, C, Barrett, P, Hazlerigg, DG. Regulation of the ovine MT1 melatonin receptor promoter: interaction between multiple pituitary transcription factors at different phases of development. Mol Cell Endocrinol 2007 268 (1–2): 5966.Google Scholar
43Mendez, N, Abarzua-Catalan, L, Vilches, N, Galdames, HA, Spichiger, C, Richter, HG, et al.Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One 2012 7 (8): e42713.Google Scholar
44Croteau, A, Marcoux, S, Brisson, C. Work activity in pregnancy, preventive measures, and the risk of delivering a small-for-gestational-age infant. Am J Public Health 2006 96 (5): 846–55.Google Scholar
45Zhu, JL, Hjollund, NH, Olsen, J, National Birth Cohort in Denmark. Shift work, duration of pregnancy, and birth weight: the National Birth Cohort in Denmark. Am J Obstet Gynaecol. 2004 191 (1): 285–91.Google Scholar
46Mahoney, MM. Shift work, jet lag, and female reproduction. Int J Endocrinol 2010 2010: 813764.Google Scholar
47Varcoe, TJ, Wight, N, Voultsios, A, Salkeld, MD, Kennaway, DJ. Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One 2011 6 (4): e18504.Google Scholar
48Barr, MJ. Prenatal growth of Wistar rats: circadian periodicity of fetal growth late in gestation. Teratology 1973 7 (3): 283–7.Google Scholar
49Danilova, N, Krupnik, V, Sugden, D, Zhdanova, IV. Melatonin stimulates cell proliferation in zebrafish embryo and accelerates its development. FASEB J 2004 18 (6): 751–3.CrossRefGoogle ScholarPubMed
50Torres-Farfan, C, Valenzuela, FJ, Germain, AM, Viale, ML, Campino, C, Torrealba, F, et al.Maternal melatonin stimulates growth and prevents maturation of the capuchin monkey fetal adrenal gland. J Pineal Res 2006 41 (1): 5866.Google Scholar
51Longo, S, Bollani, L, Decembrino, L, Di Comite, AD, Angelini, M, Stronati, M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 2012 26 (3): 222–5.Google Scholar
52Jouvet-Mounier, D, Astic, L, Lacote, D. Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 1970 2 (4): 216–39.Google Scholar
53Mendelson, WB, Bergmann, BM. Effects of pinealectomy on baseline sleep and response to sleep deprivation. Sleep 2001 24 (4): 369–73.Google Scholar
54Mueller, AD, Mear, RJ, Mistlberger, RE. Inhibition of hippocampal neurogenesis by sleep deprivation is independent of circadian disruption and melatonin suppression. Neuroscience 2011 193: 170–81.Google Scholar
55Fisher, SP, Sugden, D. Endogenous melatonin is not obligatory for the regulation of the rat sleep-wake cycle. Sleep 2010 33 (6): 833–40.Google Scholar
56Mirmiran, M. The function of fetal/neonatal rapid eye movement sleep. Bhav Brain Res 1995 69 (1–2): 1322.Google Scholar
57Gould, E, Tanapat, P, Hastings, NB, Shors, TJ. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 1999 3 (5): 186192.Google Scholar
58Guzman-Marin, R, Suntsova, N, Methippara, M, Greiffenstein, R, Szymusiak, R, McGinty, D. Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci 2005 22 (8): 2111–6.Google Scholar
59Guzman-Marin, R, Suntsova, N, Bashir, T, Nienhuis, R, Szymusiak, R, McGinty, D. Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 2008 31 (2): 167–75.Google Scholar
60Biswas, S, Mishra, P, Mallick, BN. Increased apoptosis in rat brain after rapid eye movement sleep loss. Neuroscience 2006 142 (2): 315–31.Google Scholar
61Morrissey, MJ, Duntley, SP, Anch, AM, Nonneman, R. Active sleep and its role in the prevention of apoptosis in the developing brain. Med Hypotheses 2004 62 (6): 876–9.CrossRefGoogle ScholarPubMed
62Mirmiran, M, Dijcks, FA, Bos, NP, Gorter, JA, Van der Werf, D. Cortical neuron sensitivity to neurotransmitters following neonatal noradrenaline depletion. Int J Dev Neurosci 1990.Google Scholar
63Vogel, GW, Feng, P, Kinney, GG. Ontogeny of REM sleep in rats: possible implications for endogenous depression. Physiol Behav 2000 68 (4): 453–61.Google Scholar
64Okatani, Y, Okamoto, K, Hayashi, K, Wakatsuki, A, Tamura, S, Sagara, Y. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 1998 25 (3): 129–34.Google Scholar
65Okatani, Y, Wakatsuki, A, Kaneda, C. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 2000 28 (2): 8996.Google Scholar
66Jimenez-Jorge, S, Guerrero, JM, Jimenez-Caliani, AJ, Naranjo, MC, Lardone, PJ, Carrillo-Vico, A, et al.Evidence for melatonin synthesis in the rat brain during development. J Pineal Res 2007 42: 240–6.Google Scholar
67Yuan, H, Lu, Y, Pang, SF. Binding characteristics and regional distribution of [125I]iodomelatonin binding sites in the brain of the human fetus. Neurosci Lett 1991 130 (2): 229–32.Google Scholar
68Macchi, MM, Bruce, JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004 25 (3–4): 177–95.Google Scholar
69Stehle, JH, Foulkes, NS, Pévet, P, Sassone-Corsi, P. Developmental maturation of pineal gland function: synchronized CREM inducibility and adrenergic stimulation. Mol Endocrinol 1995 9 (6): 706–16.Google Scholar
70Reiter, RJ, Tan, DX. Role of CSF in the transport of melatonin. J Pineal Res 2002 33 (1): 61.CrossRefGoogle ScholarPubMed
71Reiter, RJ, Tan, DX, Manchester, LC, Pilar Terron, M, Flores, LJ, Koppisepi, S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 2007 52: 1128.Google Scholar
72Slominski, RM, Reiter, RJ, Schlabritz-Loutsevitch, N, Ostrom, R, Slominski, AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 2012 351 (2):152–66.Google Scholar
73Luchetti, F, Canonico, B, Betti, M, Arcangeletti, M, Pilolli, F, Piroddi, M, et al.Melatonin signaling and cell protection function. FASEB J 2010 24 (10): 3603–24.CrossRefGoogle ScholarPubMed
74Dubocovich, ML, Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005 27 (2): 101–10.Google Scholar
75Weaver, DR, Namboodiri, MA, Reppert, SM. Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett 1988 228 (1): 123–7.Google Scholar
76Thomas, L, Purvis, CP, Drew, JE, Abramovich, DR, Williams, LM. Melatonin receptors in human fetal brain: 2-[(125)I]iodomelatonin binding and MT1 gene expression. J Pineal Res 2002 33 (4): 218–24.Google Scholar
77Drew, JE, Williams, L, Hannah, LT, Barrett, P, Abramovich, DR, Morgan, P. Identification and characterisation of 2-[125I]iodomelatonin binding and Mel1a melatonin receptor expression in the human fetal leptomeninges. Brain Res 1997 761 (1): 8792.Google Scholar
78Niles, LP, Armstrong, KJ, Rincón Castro, LM, Dao, CV, Sharma, R, McMillan, CR, et al.Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci 2004 5: 41.Google Scholar
79Al-Ghoul, WM, Herman, MD, Dubocovich, ML. Melatonin receptor subtype expression in human cerebellum. Neuroreport 1998 9 (18): 4063–8.Google Scholar
80Adachi, A, Natesan, AK, Whitfield-Rucker, MG, Weiqum, SE, Cassone, VM. Functional melatonin receptors and metabolic coupling in cultured chick astrocytes. Glia 2002 39 (3): 268–78.Google Scholar
81Reiter, RJ, Tan, DX, Leon, J, Kilic, U, Kilic, E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med. 2005 230 (2): 104–17.Google Scholar
82Chang, CF, Huang, HJ, Lee, HC, Hung, KC, Wu, RT, Lin, AM. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 2012 52 (3): 312–21.Google Scholar
83Acuña-Castroviejo, D, Martín, M, Macías, M, Escames, G, León, J, Khaldy, H, et al.Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001 30 (2): 6572.Google Scholar
84Pandi-Perumal, SR, BaHammam, AS, Brown, GM, Spence, DW, Bharti, VK, Kaur, C, et al.Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neuotox Res 2013 23 (3): 267300.Google Scholar
85Jou, MJ, Peng, TI, Yu, PZ, Jou, SB, Reiter, RJ, Chen, JY, et al.Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 2007 43 (4): 389403.Google Scholar
86Cardinali, DP, Pagano, ES, Scacchi Bernasconi, PA, Reynoso, R, Scacchi, P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 2013 63 (2): 322–30.Google Scholar
87Lee, SH, Chun, W, Kong, PJ, Han, JA, Cho, BP, Kwon, OY, et al.Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus. J Pineal Res 2006 40 (1): 7985.Google Scholar
88Benítez-King, G, Antón-Tay, F. Calmodulin mediates melatonin cytoskeletal effects. Experimentia 1993 49 (8): 635–41.Google Scholar
89Mei, YA, Lee, PP, Wei, H, Zhang, ZH, Pang, SF. Melatonin and its analogs potentiate the nifedipine-sensitive high-voltage-activated calcium current in the chick embryonic heart cells. J Pineal Res 2001 30 (1): 1321.Google Scholar
90Benítez-King, G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 2006 40 (1): 19.Google Scholar
91Korkmaz, A, Sanchez-Barcelo, E, Tan, DX, Reiter, RJ. Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 2009 115 (1): 1327.Google Scholar
92Sharma, R, Ottenhof, T, Rzeczkowska, PA, Niles, LP. Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res 2008 45 (3): 277–84.Google Scholar
93Park, HT, Baek, SY, Kim, BS, Kim, JB, Kim, JJ. Developmental expression of ‘RZR beta, a putative nuclear-melatonin receptor’ mRNA in the suprachiasmatic nucleus of the rat. Neurosci Lett 1996 217 (1): 1720.Google Scholar
94Agez, L, Laurent, V, Pévet, P, Masson-Pévet, M, Gauer, F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 2007 144 (2): 522–30.Google Scholar
95Northington, FJ, Chavez-Valdez, R, Martin, LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011 69 (5): 743–58.Google Scholar
96Lenaz, G, Genova, ML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010 12 (8): 9611008.Google Scholar
97Esposito, E, Cuzzocrea, S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010 8 (3): 228–42.CrossRefGoogle ScholarPubMed
98Tan, DX, Reiter, RJ, Manchester, LC, Yan, MT, El-Sawi, M, Sainz, RM, et al.Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002 2 (2): 181–97.Google Scholar
99Gilad, E, Cuzzocrea, S, Zingarelli, B, Salzman, AL, Szabó, C. Melatonin is a scavenger of peroxynitrite. Life Sci 1997 60 (10): PL16974.Google Scholar
100Hardeland, R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005 27 (2): 119–30.Google Scholar
101Sewerynek, E, Poeggeler, B, Melchiorri, D, Reiter, RJ. H2O2-induced lipid peroxidation in rat brain homogenates is greatly reduced by melatonin. Neurosci Lett 1995 195 (3): 203–5.Google Scholar
102Uz, T, Giusti, P, Franceschini, D, Kharlamov, A, Manev, H. Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats. Neuroscience 1996 73 (3): 631–6.Google Scholar
103Barlow-Walden, LR, Reiter, RJ, Abe, M, Pablos, M, Menendez-Pelaez, AD, Chen, L, et al.Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 1995 26 (5): 497502.Google Scholar
104Pablos, MI, Reiter, RJ, Ortiz, GG, Guerrero, JM, Agapito, MT, Chuang, JI, et al.Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 1998 32: 6975.Google Scholar
105Korkmaz, A, Rosales-Corral, S, Reiter, RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene 2012 503 (1): 111.Google Scholar
106Pozo, D, Reiter, RJ, Calvo, JR, Guerrero, JM. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 1997 65 (3): 430–42.Google Scholar
107Tan, DX, Manchester, LC, Liu, X, Rosales-Corral, S, Acuna-Castroviejo, D, Reiter, RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 2013 54 (2): 127–38.Google Scholar
108López, A, García, JA, Escames, G, Venegas, C, Ortiz, F, López, LC, et al.Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 2009 46 (2): 188–98.Google Scholar
109Andrabi, SA, Sayeed, I, Siemen, D, Wolf, G, Horn, TF. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 2004 18 (7): 869–71.Google Scholar
110Paradies, G, Petrosillo, G, Paradies, V, Reiter, RJ, Ruggiero, FM. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 2010 48 (4): 297310.Google Scholar
111Olivier, P, Fontaine, RH, Loron, G, Van Steenwinckel, J, Biran, V, Massonneau, V, et al.Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009 4 (9): e7128.Google Scholar
112Robertson, NJ, Faulkner, S, Fleiss, B, Bainbridge, A, Andorka, C, Price, D, et al.Melatonin augments hypothermic neuroprotection in a perinatal asphyxia piglet model. Brain 2013 136 (Pt 1): 90105.Google Scholar
113Villapol, S, Fau, S, Renolleau, S, Biran, V, Charriaut-Marlangue, C, Baud, O. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr Res 2011 69 (1): 51–5.Google Scholar
114Husson, I, Mesplès, B, Bac, P, Vamecq, J, Evrard, P, Gressens, P. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 2002 51 (1): 8292.Google Scholar
115Fu, J, Zhao, SD, Liu, HJ, Yuan, QH, Liu, SM, Zhang, YM, et al.Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J Pineal Res 2011 51 (1): 104–12.Google Scholar
116Jahnke, G, Marr, M, Myers, C, Wilson, R, Travlos, G, Price, C. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 1999 50 (2): 271–9.Google Scholar
117Buscemi, N, Vandermeer, B, Hooton, N, Pandya, R, Tjosvold, L, Hartling, L, et al.Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006 332 (538): 385–93.Google Scholar
118Gitto, E, Karbownik, M, Reiter, RJ, Tan, DX, Cuzzocrea, S, Chiurazzi, P, et al.Effects of melatonin treatment in septic newborns. Pediatr Res 2001 50 (6): 756–60.Google Scholar
119Gitto, E, Reiter, RJ, Cordaro, SP, La Rosa, M, Chiurazzi, P, Trimarchi, G, et al.Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol 2004 21 (4): 209–16.Google Scholar
120Fulia, F, Gitto, E, Cuzzocrea, S, Reiter, RJ, Dugo, L, Gitto, P, et al.Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 2005 31 (4): 343–9.Google Scholar
121Gitto, E, Romeo, C, Reiter, RJ, Impellizzeri, P, Pesce, S, Basile, M, et al.Melatonin reduces oxidative stress in surgical neonates. J Pediatr Surg 2004 39 (2): 184–9.Google Scholar
122Nickkholgh, A, Schneider, H, Sobirey, M, Venetz, WP, Hinz, U, Pelzl, lH, et al.The use of high-dose melatonin in liver resection is safe: first clinical experience. J Pineal Res. 2011 50 (4): 381–8.Google Scholar
123Weishaupt, JH, Bartels, C, Pölking, E, Dietrich, J, Rohde, G, Poeggeler, B, et al.Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 2006 41 (4): 313–23.Google Scholar
124Terzolo, M, Revelli, A, Guidetti, D, Piovesan, A, Cassoni, P, Paccotti, P, et al.Evening administration of melatonin enhances the pulsatile secretion of prolactin but not of LH and TSH in normally cycling women. Clin Endocrinol 1993 39 (2): 185–91.Google Scholar
125Muñoz-Hoyos, A, Jaldo-Alba, F, Molina-Carballo, A, Rodríguez-Cabezas, T, Molina-Font, JA, Acuña-Castroviejo, D. Absence of plasma melatonin circadian rhythm during the first 72 hours of life in human infants. J Clin Endocrinol Metab 1993 77 (3): 699703.Google Scholar
126Muñoz-Hoyos, A, Bonillo-Perales, A, Avila-Villegas, R, González-Ripoll, M, Uberos, J, Florido-Navío, J, et al.Melatonin levels during the first week of life and their relation with the antioxidant response in the perinatal period. Neonatology 2007 92 (3): 209–16.Google Scholar
127Tauman, R, Zisapel, N, Laudon, M, Nehama, H, Sivan, Y. Melatonin production in infants. Pediatr Neurol 2002 26 (5): 379–82.Google Scholar
128Kennaway, DJ, Stamp, GE, Goble, FC. Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab 1992 75 (2): 367–9.Google Scholar
129Ardura, J, Gutierrez, R, Andres, J, Agapito, T. Emergence and evolution of the circadian rhythm of melatonin in children. Horm Res 2003 59 (2): 6672.Google Scholar
130Kennaway, DJ, Goble, FC, Stamp, GE. Factors influencing the development of melatonin rhythmicity in humans. J Clin Endocrinol Metab 1996 81 (4): 1525–32.Google Scholar
131Seifman, MA, Adamides, AA, Nguyen, PN, Vallance, SA, Cooper, DJ, Kossmann, T, et al.Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. J Cereb Blood Flow Metab 2008 28 (4): 684–96.Google Scholar
132Marseglia, L, Aversa, S, Barberi, I, Salpietro, CD, Cusumano, E, Speciale, A, et al.High endogenous melatonin levels in critically ill children: a pilot study. J Pediatr 2012 162 (2): 357–60.Google Scholar
133Pearce, W. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol 2006 100 (2): 731–8.Google Scholar
134Vento, M, Escobar, J, Cernada, M, Escrig, R, Aguar, M. The use and misuse of oxygen during the neonatal period. Clin Perinatol 2012 39 (1): 165–76.Google Scholar
135Wakatsuki, A, Izumiya, C, Okatani, Y, Sagara, Y. Oxidative damage in fetal rat brain induced by ischemia and subsequent reperfusion. Relation to arachidonic acid peroxidation. Bio Neonate 1999 76 (2): 8491.Google Scholar
136Saugstad, O, Ramji, S, Soll, R, Vento, M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology 2008 94 (3): 176–82.Google Scholar
137Volpe, JJ. Hypoxic–ischaemic encephalopathy: neuropathology and pathogenesis. In: Volpe, J (ed.). Neurology of the Newborn, 4th edn.Philadelphia, PA: Saunders 2001 497520.Google Scholar
138Robertson, NJ, Groenendaal, F. Hypoxic–ischaemic Brain Injury. In: Rennie, JM (ed.). Textbook of Neonatology, 5th edn.Edinburgh: Churchill Livingstone 2011 1114–55.Google Scholar
139Clancy, B, Finlay, BL, Darlington, RB, Anand, KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007 28 (5): 931–7.Google Scholar
140Miller, SL, Yan, EB, Castillo-Meléndez, M, Jenkin, G, Walker, DW. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci 2005 27 (2–4): 200–10.Google Scholar
141Welin, AK, Svedin, P, Lapatto, R, Sultan, B, Hagberg, H, Gressens, P, et al.Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007 61 (2): 153–8.Google Scholar
142Kotler, M, Rodríguez, C, Sáinz, RM, Antolín, I, Menéndez-Peláez, A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 1998 24 (2): 83–9.Google Scholar
143Wakatsuki, A, Okatani, Y, Shinohara, K, Ikenoue, N, Fukaya, T. Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. J Pineal Res 2001 31 (2): 167–72.Google Scholar
144Watanabe, K, Wakatsuki, A, Shinohara, K, Ikenoue, N, Yokota, K, Fukaya, T. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res 2004 37 (4): 276–80.Google Scholar
145Watanabe, K, Hamada, F, Wakatsuki, A, Nagai, R, Shinohara, K, Hayashi, Y, et al.Prophylactic administration of melatonin to the mother throughout pregnancy can protect against oxidative cerebral damage in neonatal rats. J Matern Fetal Neonatal Med 2012 25 (8): 1254–9.Google Scholar
146Hamada, F, Watanabe, K, Wakatsuki, A, Nagai, R, Shinohara, K, Hayashi, Y, et al.Therapeutic effects of maternal melatonin administration on ischemia/reperfusion-induced oxidative cerebral damage in neonatal rats. Neonatology 2010 98 (1): 3340.Google Scholar
147Kaur, C, Sivakumar, V, Ling, EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res 2010 48 (3): 185–93.Google Scholar
148Balduini, W, Carloni, S, Perrone, S, Bertrando, S, Tataranno, ML, Negro, S, et al.The use of melatonin in hypoxic–ischemic brain damage: an experimental study. J Matern Fetal Neonatal Med 2012 25 (Suppl. 1): 119–24.Google Scholar
149Hedtjärn, M, Mallard, C, Iwakura, Y, Hagberg, H. Combined deficiency of IL-1beta18, but not IL-1 alphabeta, reduces susceptibility to hypoxia-ischemia in the immature brain. Dev Neurosci 2005 27 (2–4): 143–8.Google Scholar
150Hutton, LC, Abbass, M, Dickinson, H, Ireland, Z, Walker, DW. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci 2009 31 (5): 437–51.Google Scholar
151Carloni, S, Perrone, S, Buonocore, G, Longini, M, Proietti, F, Balduini, W. Melatonin protects from the long-term consequences of a neonatal hypoxic–ischemic brain injury in rats. J Pineal Res 2008 44 (2): 157–64.Google Scholar
152Haynes, RL, Baud, O, Li, J, Kinney, HC, Volpe, JJ, Folkerth, DR. Oxidative and Nitrative injury in periventricular leukomalacia: a review. Brain Pathol. 2005 15 (3): 225–33.Google Scholar
153Kendall, G, Peebles, D. Acute fetal hypoxia: the modulating effect of infection. Early Hum Dev 2005 81 (1): 2734.Google Scholar
154Shatrov, JG, Birch SCM, Lam, LT, Quinlivan, JA, McIntyre, S, Mendz, GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet Gynaecol. 2010 116 (2 Pt 1): 387–92.Google Scholar
155Wu, YW. Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev 2002 8 (1): 25–9.Google Scholar
156Carrillo-Vico, A, Lardone, PJ, Alvarez-Sánchez, N, Rodríguez-Rodríguez, A, Guerrero, JM. Melatonin: buffering the immune system. Int J Mol Sci 2013 14 (4): 8638–83.Google Scholar
157Srinivasan, V, Pandi-Perumal, SR, Spence, DW, Kato, H, Cardinali, DP. Melatonin in septic shock: some recent concepts. J Crit Care 2010 25 (4): 656.e1–6.Google Scholar
158Da Silveira Cruz-Machado, S, Carvalho-Sousa, CE, Tamura, EK, Pinato, L, Cecon, E, Fernandes, PA, et al.TLR4 and CD14 receptors expressed in the rat pineal gland trigger NFKB pathway. J Pineal Res 2007 49: 183–92.Google Scholar
159Silva, SO, Ximenes, VF, Livramento, JA, Catalani, LH, Campa, A. High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 2005 39: 302–6.Google Scholar
160Gerber, J, Lotz, M, Ebert, S, Kiel, S, Huether, G, Kuhnt, U, et al.Melatonin is neuroprotective in experimental Streptococcus pneumoniae meningitis. J Infect Dis 2005 19 (5): 783–90.Google Scholar
161Wu, UI, Mai, FD, Sheu, JN, Chen, LY, Liu, YT, Huang, HC, et al.Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011 50 (2): 159–70.Google Scholar
162Eklind, S, Mallard, C, Leverin, AL, Gilland, E, Blomgren, K, Mattsby-Baltzer, I, et al.Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001 13 (6): 1101–6.Google Scholar
163Wang, X, Svedin, P, Nie, C, Lapatto, R, Zhu, C, Gustavsson, M, et al.N-Acetylcysteine reduces lipopolysaccharide-sensitized hypoxic–ischemic brain injury. Ann Neurol 2007 61: 263–71.Google Scholar
164Marlow, N, Wolke, D, Bracewell, MA, Samara, MEPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005 352 (1): 919.Google Scholar
165Moore, T, Hennessy, EM, Myles, J, Johnson, S, Draper, ES, Costeloe, KL, et al.Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 2012 345: e7961.Google Scholar
166Volpe, JJ. The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009 16 (4): 167–78.Google Scholar
167Alonso-Alconada, D, Alvarez, A, Lacalle, J, Hilario, E. Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol Histopathol 2012 Jun 27 (6): 771–83.Google Scholar
168Merchant, NM, Azzopardi, DV, Hawwa, AF, McElnay, JC, Middleton, B, Arendt, J, et al.Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol 2013; doi: 10.1111/bcp.12092. [Epub ahead of print].Google Scholar
169Wakatsuki, A, Okatani, Y, Izumiya, C, Ikenoue, N. Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J Pineal Res 1999 26 (3): 147–52.Google Scholar
170Wakatsuki, A, Okatani, Y, Shinohara, K, Ikenoue, N, Kaneda, C, Fukaya, T. Melatonin protects fetal rat brain against oxidative mitochondrial damage. J Pineal Res 2001 30 (1): 22–8.Google Scholar
171Ozyener, F, Çetinkaya, M, Alkan, T, Gören, B, Kafa, IM, Kurt, MA, et al.Neuroprotective effects of melatonin administered alone or in combination with topiramate in neonatal hypoxic–ischemic rat model. Restor Neurol Neurosci 2012 30 (5): 435–44.Google Scholar
172Cetinkaya, M, Alkan, T, Ozyener, F, Kafa, IM, Kurt, MA, Koksal, N. Possible neuroprotective effects of magnesium sulfate and melatonin as both pre- and post-treatment in a neonatal hypoxic–ischemic rat model. Neonatology 2011 99 (4): 302–10.Google Scholar
173Yawno, T, Castillo-Melendez, M, Jenkin, G, Wallace, EM, Walker, DW, Miller, SL. Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia. Dev Neurosci 2013 34 (6): 543–51.Google Scholar