Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T17:40:21.570Z Has data issue: false hasContentIssue false

GENETICS OF CARDIAC MALFORMATIONS

Published online by Cambridge University Press:  01 May 2008

SHA TANG
Affiliation:
Department of Pediatrics, Division of Human Genetics
TAOSHENG HUANG*
Affiliation:
Department of Pediatrics, Division of Human Genetics Department of Pathology & Laboratory Medicine Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
*
Taosheng Huang, Division of Genetics, Department of Pediatrics, Developmental & Cell Biology and Pathology, 314 Robert R. Sprague Hall, University of California, Irvine, CA 92697.

Abstract

Congenital heart disease is one of the most common major malformations in humans, contributing substantially to the financial and psychological burden of child healthcare. About one percent of children are born with heart defects, and every year, more children die from congenital heart disease than are diagnosed with cancer. A diagnosis of congenital heart disease is frightening for parents, particularly when it affects a fragile newborn. The heart is the first organ to be matured in a human fetus and if a particular congenital heart defect is compatible with fetal life, the child will be born with a defective heart. More than 300 genetic syndromes are associated with congenital cardiac defects. In this review, we will discuss the genetics of congenital heart disease, how to carry out a diagnosis of the genetic causes and how to provide counseling for families with congenital heart disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Srivastava, D. Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol 2001; 63: 451–69.CrossRefGoogle ScholarPubMed
2Buckingham, M, Meilhac, S, Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005 6: 826–35.CrossRefGoogle ScholarPubMed
3Srivastava, D, Olson, EN. A genetic blueprint for cardiac development. Nature 2000; 407: 221–26.CrossRefGoogle ScholarPubMed
4Clark, KL, Yutzey, KE, Benson, DW. Transcription factors and congenital heart defects. Annu Rev Physiol 2006; 68: 97121.CrossRefGoogle ScholarPubMed
5Ryan, AK, Blumberg, B, Rodriguez-Esteban, C, Yonei-amura, S, Tamura, K, Tsukui, T, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998; 394: 545–51.CrossRefGoogle ScholarPubMed
6Supp, DM, Witte, DP, Potter, SS, Brueckner, M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997; 389: 963–66.CrossRefGoogle ScholarPubMed
7Freeman, SB, Taft, LF, Dooley, KJ, Allran, K, Sherman, SL, Hassold, TJ, et al. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet 1998; 80: 213–17.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
8Cleves, MA, Hobbs, CA, Cleves, PA, Tilford, JM, Bird, TM, Robbins, JM. Congenital defects among liveborn infants with Down syndrome. Birth Defects Res A Clin Mol Teratol 2007; 79: 657–63.CrossRefGoogle ScholarPubMed
9Hook, EB, Cross, PK, Schreinemachers, DM. Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA 1983; 249: 2034–38.CrossRefGoogle ScholarPubMed
10Barlow, GM, Chen, XN, Shi, ZY, Lyons, GE, Kurnit, DM, Celle, L, et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med. 2001; 3: 91101.CrossRefGoogle Scholar
11Baumann, J. Down syndrome cell adhesion molecule–a common determinant of brain and heart wiring. Pediatr Res 2007; 62: 1.CrossRefGoogle Scholar
12Matsuoka, R, Misugi, K, Goto, A, Gilbert, EF, Ando, M. Congenital heart anomalies in the trisomy 18 syndrome, with reference to congenital polyvalvular disease. Am J Med Genet 1983; 14: 657–68.CrossRefGoogle ScholarPubMed
13Pont, SJ, Robbins, JM, Bird, TM, Gibson, JB, Cleves, MA, Tilford, JM, et al. Congenital malformations among liveborn infants with trisomies 18 and 13. Am J Med Genet 2006; 140: 1749–56.CrossRefGoogle ScholarPubMed
14Brewer, CM, Holloway, SH, Stone, DH, Carothers, AD, FitzPatrick, DR. Survival in trisomy 13 and trisomy 18 cases ascertained from population based registers. J Med Genet 2002; 39: e54.CrossRefGoogle ScholarPubMed
15Gravholt, CH. Turner syndrome and the heart: cardiovascular complications and treatment strategies. Am J Cardiovasc Drugs 2002; 2: 401–13.CrossRefGoogle ScholarPubMed
16Blaschke, RJ, Hahurij, ND, Kuijper, S, Just, S, Wisse, LJ, Deissler, K, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 2007; 115: 1830–38.CrossRefGoogle ScholarPubMed
17de la Chapelle, A, Herva, R, Koivisto, M, Aula, P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 1981; 57: 253–56.CrossRefGoogle ScholarPubMed
18Scambler, PJ, Kelly, D, Lindsay, E, Williamson, R, Goldberg, R, Shprintzen, R, et al. Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 1992; 339: 1138–39.CrossRefGoogle ScholarPubMed
19Morrow, B, Goldberg, R, Carlson, C, Das Gupta, R, Sirotkin, H, Collins, J, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet 1995: 56: 1391–403.Google ScholarPubMed
20McDonald-McGinn, DM, Kirschner, R, Goldmuntz, E, Sullivan, K, Eicher, P, Gerdes, M, et al. The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet Couns 1999; 10: 1124.Google ScholarPubMed
21Lindsay, EA, Vitelli, F, Su, H, Morishima, M, Huynh, T, Pramparo, T, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410: 97101.CrossRefGoogle ScholarPubMed
22Merscher, S, Funke, B, Epstein, JA, Heyer, J, Puech, A, Lu, MM, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001; 104: 619–29.CrossRefGoogle ScholarPubMed
23Jerome, LA, Papaioannou, VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001; 27: 286–91.CrossRefGoogle ScholarPubMed
24Nowotschin, S, Liao, J, Gage, PJ, Epstein, JA, Campione, M, Morrow, BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field . Development. 2006; 133: 1565–73.CrossRefGoogle ScholarPubMed
25Tassabehji, M. Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet 2003; 12: R22937.CrossRefGoogle ScholarPubMed
26Perez Jurado, LA, Peoples, R, Kaplan, P, Hamel, BC, Francke, U. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet 1996; 59: 781–92.Google ScholarPubMed
27Ewart, AK, Morris, CA, Atkinson, D, Jin, W, Sternes, K, Spallone, P, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 1993; 5: 11–6.CrossRefGoogle Scholar
28Tassabehji, M, Metcalfe, K, Fergusson, WD, Carette, MJ, Dore, JK, Donnai, D, et al. LIM-kinase deleted in Williams syndrome. Nat Genet 1996; 13: 272–73.CrossRefGoogle ScholarPubMed
29Arber, S, Barbayannis, FA, Hanser, H, Schneider, C, Stanyon, CA, Bernard, O, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998; 393: 805809.CrossRefGoogle ScholarPubMed
30Huang, T. Current advances in Holt-Oram syndrome.Curr Opin Pediatr 2002; 14: 691–95.CrossRefGoogle ScholarPubMed
31Basson, CT, Bachinsky, DR, Lin, RC, Levi, T, Elkins, JA, Soults, J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997; 15: 30–5.CrossRefGoogle ScholarPubMed
32Li, QY, Newbury-Ecob, RA, Terrett, JA, Wilson, DI, Curtis, AR, Yi, CH, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997; 15: 2129.CrossRefGoogle ScholarPubMed
33Zaragoza, MV, Lewis, LE, Sun, G, Wang, E, Li, L, Said-Salman, I, et al. Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene 2004; 14; 330: 918.CrossRefGoogle Scholar
34Huang, T, Lock, JE, Marshall, AC, Basson, C, Seidman, JG, Seidman, CE. Causes of clinical diversity in human TBX5 mutations. Cold Spring Harb Symp Quant Biol 2002; 67: 115–20.CrossRefGoogle ScholarPubMed
35Hiroi, Y, Kudoh, S, Monzen, K, Ikeda, Y, Yazaki, Y, Nagai, R, et al. Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 2001; 28: 276–80.CrossRefGoogle ScholarPubMed
36Garg, V, Kathiriya, IS, Barnes, R, Schluterman, MK, King, IN, Butler, CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003; 424: 443–47.CrossRefGoogle ScholarPubMed
37Ghosh, TK, Packham, EA, Bonser, AJ, Robinson, TE, Cross, SJ, Brook, JD. Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Hum Mol Genet 2001; 10: 1983–94.CrossRefGoogle ScholarPubMed
38Basson, CT, Huang, T, Lin, RC, Bachinsky, DR, Weremowicz, S, Vaglio, A, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA. 1999; 96: 2919–24.CrossRefGoogle ScholarPubMed
39Brassington, AM, Sung, SS, Toydemir, RM, Le, T, Roeder, AD, Rutherford, AE, et al. Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 2003; 73: 7485.CrossRefGoogle Scholar
40Sun, G, Lewis, LE, Huang, X, Nguyen, Q, Price, C, Huang, T. TBX5, a gene mutated in Holt-Oram syndrome, is regulated through a GC box and T-box binding elements (TBEs). J Cell Biochem 2004; 92: 189–99.CrossRefGoogle Scholar
41Reamon-Buettner, SM, Borlak, J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat 2004; 24: 104.CrossRefGoogle ScholarPubMed
42Gelb, BD, Tartaglia, M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet 2006; 15: R22026.CrossRefGoogle ScholarPubMed
43Razzaque, MA, Nishizawa, T, Komoike, Y, Yagi, H, Furutani, M, Amo, R, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet 2007; 39: 1013–17.CrossRefGoogle ScholarPubMed
44Tartaglia, M, Mehler, EL, Goldberg, R, Zampino, G, Brunner, HG, Kremer, H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–68.CrossRefGoogle ScholarPubMed
45Chen, B, Bronson, RT, Klaman, LD, Hampton, TG, Wang, JF, Green, PJ, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet 2000; 24: 296–99.CrossRefGoogle ScholarPubMed
46Tartaglia, M, Pennacchio, LA, Zhao, C, Yadav, KK, Fodale, V, Sarkozy, A, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome.Nat Genet 2007; 39: 7579.CrossRefGoogle Scholar
47Schubbert, S, Zenker, M, Rowe, SL, Boll, S, Klein, C, Bollag, G, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006; 38: 331–36.CrossRefGoogle ScholarPubMed
48Pandit, B, Sarkozy, A, Pennacchio, LA, Carta, C, Oishi, K, Martinelli, S, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 2007; 39: 1007–12.CrossRefGoogle ScholarPubMed
49Kamath, BM, Spinner, NB, Emerick, KM, Chudley, AE, Booth, C, Piccoli, DA, et al. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation. 2004; 109: 1354–58.CrossRefGoogle ScholarPubMed
50Li, L, Krantz, ID, Deng, Y, Genin, A, Banta, AB, Collins, CC, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997; 16: 243–51.CrossRefGoogle ScholarPubMed
51McDaniell, R, Warthen, DM, Sanchez-Lara, PA, Pai, A, Krantz, ID, Piccoli, DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006; 79: 169–73.CrossRefGoogle ScholarPubMed
52High, FA, Epstein, JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 2008; 9: 4961.CrossRefGoogle ScholarPubMed
53McCright, B, Lozier, J, Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002; 129: 1075–82.CrossRefGoogle ScholarPubMed
54Wren, C, Birrell, G, Hawthorne, G. Cardiovascular malformations in infants of diabetic mothers. Heart 2003; 89: 1217–20.CrossRefGoogle ScholarPubMed
55Roberts, C, Ivins, SM, James, CT, Scambler, PJ. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 2005; 232: 928–38.CrossRefGoogle ScholarPubMed
56Cipollone, D, Amati, F, Carsetti, R, Placidi, S, Biancolella, M, D'Amati, G, et al. A multiple retinoic acid antagonist induces conotruncal anomalies, including transposition of the great arteries, in mice. Cardiovasc Pathol 2006; 15: 194202.CrossRefGoogle ScholarPubMed
57Pinkel, D, Segraves, R, Sudar, D, Clark, S, Poole, I, Kowbel, D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–11.CrossRefGoogle ScholarPubMed
58Snijders, AM, Nowak, N, Segraves, R, Blackwood, S, Brown, N, Conroy, J, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 2001; 29: 263–64.CrossRefGoogle ScholarPubMed
59Vissers, LE, van Ravenswaaij, CM, Admiraal, R, Hurst, JA, de Vries, BB, Janssen, IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004; 36: 955–57.CrossRefGoogle Scholar