Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T03:56:17.401Z Has data issue: false hasContentIssue false

SEIZURES IN WOMEN WITH PREECLAMPSIA: MECHANISMS AND MANAGEMENT

Published online by Cambridge University Press:  23 March 2011

MARILYN J CIPOLLA*
Affiliation:
Department of Neurology, University of Vermont
RICHARD P KRAIG
Affiliation:
Department of Neurology, University of Chicago
*
Marilyn J. Cipolla, PhD, Department of Neurology, University of Vermont, 89 Beaumont Ave. Given C454, Burlington, VT 05405. Email address: Marilyn.Cipolla@uvm.edu

Extract

Eclampsia is defined in the obstetrical literature as the occurrence of unexplained seizure during pregnancy in a woman with preeclampsia. In the Western world, the incidence of eclampsia is ~1 per 2000 to 1 per 3000 pregnancies, but the incidence is 10-fold higher in tertiary referral centers and undeveloped countries where there is poor prenatal care, and in multi-fetal gestations. Nearly 1 in 50 women with eclampsia die as do 1 in 14 of their offspring, and mortality rates are considerably higher in undeveloped countries. Eclampsia is also associated with significant life-threatening complications, including neurological events. Seizure acutely can cause stroke, haemorrhage, oedema and brain herniation and thus lead to epilepsy and cognitive impairment later in life.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roberts, JM, Redman, CWG.Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 1993; 341: 1447–454.CrossRefGoogle ScholarPubMed
2Sibai, BM.Diagnosis, prevention, and management of eclampsia. Obstet Gynecol 2005; 105: 402–10.CrossRefGoogle ScholarPubMed
3Douglas, KA, Redman, CWG.Eclampsia in the United Kingdom. BMJ 1994; 309: 1395–400.CrossRefGoogle ScholarPubMed
4Saftlas, AF, Olson, DR, Franks, AL, Atrash, HK, Pokras, R. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am J Obstet Gynecol 1990; 163: 460465.CrossRefGoogle ScholarPubMed
5Möller, B, Lindmark, G. Eclampsia in Sweden, 1976–1980. Acta Obstet Gynecol Scand 1986; 65: 307–14.Google Scholar
6Mattar, F, Sibai, BM. Eclampsia. VIII. Risk factors for maternal morbidity. Am J Obstet Gynecol 2000; 182: 307–12.Google Scholar
7Makhseed, M, Musini, VM. Eclampsia in Kuwait 1981–1993. Aust N Z J Obstet Gynaecol 1996; 36: 258–63.CrossRefGoogle ScholarPubMed
8Duley, L.The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009; 33: 130–37.Google Scholar
9Katz, VL, Farmer, R, Kuller, JA. Preeclampsia into eclampsia: toward a new paradigm. Am J Obstet Gynecol 2000; 182: 1389–396.Google Scholar
10Servillo, G, Striano, P, Striano, S. Posterior reversible encephalopathy syndrome (PRES) in obstetric critically ill patients. Intensive Care Med 2003; 29: 2323–326.CrossRefGoogle Scholar
11Gilmore, E, Choi, HA, Hirsch, LJ, Claassen, J. Seizures and CNS haemorrhage: spontaneous intracerebral and aneurysmal subarachnoid haemorrhage. Neurologist 2010; 16: 165–75.Google Scholar
12Menon, B, Shorvon, SD. Ischaemic stroke in adults and epilepsy. Epilepsy Res 2009; 87: 111.CrossRefGoogle ScholarPubMed
13Vezzani, A, Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005; 46: 1724–743.CrossRefGoogle ScholarPubMed
14Holmes, GL, Lenck-Santini, PP. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 2006; 8: 504–15.CrossRefGoogle ScholarPubMed
15Sabai, BM. Eclampsia. VI. Maternal-perinatal outcome in 254 consecutive cases. Am J Obstet Gynecol 1990; 163: 10491055.Google Scholar
16Euser, AG, Cipolla, MJ. Magnesium sulfate for the treatment of eclampsia: a brief review. Stroke 2009; 40: 1169–175.Google Scholar
17Pritchard, JA, Cunningham, FG, Pritchard, SA. The Parkland Memorial Hospital protocol for treatment of eclampsia: Evalauation of 235 cases. Am J Obstet Gynecol 1984; 148: 951960.Google Scholar
18Donaldson, JO. Does magnesium sulfate treat eclamptic convulsions? Clinical Neuropharmacology 1986; 9: 3745.CrossRefGoogle ScholarPubMed
19Kaplan, PW, Lesser, RP, Fisher, RS, Repke, JT, Hanley, DF. No, magnesium sulfate should not be used in treating eclamptic seizures. Arch Neurol 1988; 45: 1361–364.CrossRefGoogle Scholar
20Zunker, P, Happe, S. Georgiadis AL, Louwen F, Georgiadis D, Ringelstein EB, Holgreve W. Maternal cerebral hemodynamics in pregnancy-related hypertension. A prospective transcranial Doppler study. Ultrasound Obstet Gynecol 2000; 16: 179187.Google Scholar
21Thomas, SV. Neurologic aspects of eclampsia. J Neurol Sci 1998; 155: 3743.CrossRefGoogle ScholarPubMed
22Easton, DJ. Severe preeclampsia/eclampsia hypertensive encephalopathy of pregnancy? Cerebrovasc Dis 1998; 8: 5358.CrossRefGoogle ScholarPubMed
23Fletcher, JJ, Kramer, AH, Bleck, TP, Solenski, NJ. Overlapping features of eclampsia and postpartum angiopathy. Neurocrit Care 2009; 11: 199209.CrossRefGoogle ScholarPubMed
24Koch, S, Rabinstein, A, Falcone, S, Forteza, A. Diffusion-weighted imaging shows cytotoxic and vasogenic edema in eclampsia. Am J Neurorad 2001; 22: 10681070.Google Scholar
25Kanki, T, Tsukimori, K, Mihara, F, Nakano, H. Diffusion-weighted images and vasogenic edema in eclampsia. Obstet Gynecol 1999; 93: 821–23.Google Scholar
26Williams, KP, Wilson, S. Persistence of cerebral hemodynamic changes in patients with eclampsia: A report of three cases. Am J Obstet Gynecol 1999; 181: 1162–165.CrossRefGoogle ScholarPubMed
27Manfredi, M, Beltramello, A, Bongiovanni, LG, Polo, A, Pistoia, L, Rizzuto, N. Eclamptic encephalopathy: imaging and pathogenetic considerations. Acta Neurol Scand 1997; 96: 277–82.CrossRefGoogle ScholarPubMed
28Schwartz, RB, Jones, KM, Kalina, P, Gajakian, RL, Mantello, MT, Garada, B, Holman, BL. Hypertensive encephalopathy: findings on CT, MR-Imaging, and SPECT-Imaging in 14 cases. Am J Radiol 1992; 159: 379383.Google Scholar
29Port, JD, Beauchamp, NJ. Reversible intracerebral pathologic entities mediated by vascular autoregulatory dysfunction. Radiographics 1998; 18: 253–67.Google Scholar
30Servillo, G, Striano, P, Striano, S. Posterior reversible encephalopathy syndrome (PRES) in obstetric critically ill patients. Intensive Care Med 2003; 29: 2323–326.Google Scholar
31Engelter, ST, Provenzale, JM, Petrella, JR. Assessment of vasogenic edema in eclampsia using diffusion imaging. Neuroradiology 2000; 42: 818–20.CrossRefGoogle ScholarPubMed
32Wityk, RJ, Pessin, MS. Hypertensive Encephalopathy. In: Cerebrovascular Disease. Batjer, H. Hunt, (eds). Lippincott Raven Publishers, Philadelphia, 1997; Ch. 8, pp.97102.Google Scholar
33Mirza, A. Posterior reversible encephalopathy syndrome: A variant of hypertensive encephalopathy. J Clin Neurosci 2006; 13: 590595.Google Scholar
34Cipolla, MJ, Sweet, JG, Chan, SL. Cerebral vascular adaptation to pregnancy and its role in the neurological complications of eclampsia. J Appl Physiol 2010; 110: 329339.CrossRefGoogle ScholarPubMed
35Demirtaş, Ö, Gelal, F, Dirim, V, Demirtaş, L O, Uluç, E, Baloğlu, A. Cranial MR imaging with clinical correlation in preeclampsia and eclampsia. Neuroradiology 2005; 11: 189–94.Google ScholarPubMed
36Donaldson, JO. The brain in eclampsia. Hypertens Pregnancy 1994; 13: 115133.CrossRefGoogle Scholar
37Richards, AM, Moodley, J, Graham, DI, Bullock, MR. Active management of the unconscious eclamptic patient. Br J Obstet Gynecol 1986; 93: 554–62.Google Scholar
38Richards, AM, Graham, DI, Bullock, MR. Clinical pathological study of neurological complications due to hypertensive disorders of pregnancy. J Neurol Neurosurg Psychiatr 1988; 51: 416–21.Google Scholar
39Sibai, BM, Abdella, TN, Spinnato, JA, Anderson, GD, Eclampsia, V. The incidence of nonpreventable eclampsia. Am J Obstet Gynecol 1986; 154: 581–86.Google Scholar
40Phillips, SJ, Whisnant, JP. Hypertension and the brain. Arch Intern Med 1992; 152: 938–45.Google Scholar
41Euser, AG, Cipolla, MJ. Cerebral blood flow autoregulation and edema formation during pregnancy in anesthetized rats. Hypertension 2007; 49: 334–40.Google Scholar
42Heistad, DD, Kontos, HA. In: Berne, RM, Sperelakis, N (eds.) The Cardiovascular System III. Handbook of Physiology American Physiological Society, Bethesda, MD, 1979; 137–82.Google Scholar
43Busija, DW, Heistad, DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 1984; 101: 161–11.Google Scholar
44Johansson, B, Li, C-L, Olsson, Y, Klatzo, I. Effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropath 1970; 16: 117–24.Google Scholar
45Kontos, HA, Wei, EP, Navari, RM, Levasseur, JE, Rosenblum, WI, PattersonJL, Jr JL, Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978; 234: H371H383.Google Scholar
46Kontos, HA, Wei, EP, Dietrich, WE, Navari, RM, Povlishock, JT, Ghatak, NR et al. Mechanism of cerebral arteriolar abnormalities after acute hypertension. Am J Physiol 1981; 240: H511H527.Google Scholar
47Zatik, J, Major, R, Aranyozi, J, Molnar, C, Limburg, M, Fulesdi, B. Assessment of cerebral hemodynamics during roll over test in healthy, pregnant women and those with pre-eclampsia. Br J Obstet Gynaecol 2001; 108: 353–58.Google Scholar
48Zeeman, GG, Hatab, M, Twickler, DM. Maternal cerebral blood flow changes in pregnancy. Am J Obstet Gynecol 2003; 189: 968–72.Google Scholar
49Cipolla, MJ, Sweet, JG, Thaler, I. Maternal cerebral blood flow during normal pregnancy: a cross-sectional study. Am J Obstet Gynecol doi 10.1016/j.ajog.2010.05.031.Google Scholar
50Donaldson, JO. Eclamptic hypertensive encephalopathy. Semin Neurol 1988; 8: 230–33.Google Scholar
51Zeeman, GG, Hatab, M, Twickler, DM. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging. Am J Obstet Gynecol 2004; 191: 1425–429.Google Scholar
52Schwartz, RB, Feske, SK, Polak, JF, DeGirolami, U, Iaia, A, Beckner, KM et al. Pre-eclampsia-eclampsia: clinical and neuroradiologic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 2000; 217: 371–76.Google Scholar
53Oehm, E, Hetzel, A, Els, T, Berlis, A, Keck, C, Will, H-G et al. Cerebral hemodynamics and autoregulation in reversible posterior leukoencephalopathy syndrome caused by pre-/eclampsia. Cerebrovasc Dis 2006; 22: 204208.Google Scholar
54Oehm, E, Reinhard, M, Keck, C, Els, T, Spreer, J, Hetzel, A. Impaired dynamic cerebral autoregulation in eclampsia. Ultrasound Obstet Gynecol 2003; 22: 395–98.CrossRefGoogle ScholarPubMed
55Sakamoto, K, Saito, T, Orman, R, Koizumi, K, Lazar, J, Salciccioli, L et al. Autonomic consequences of kainic acid-induced limbic cortical seizures in rats: peripheral autonomic nerve activity, acute cardiovascular changes, and death. Epilepsia 2008; 49: 982–96.CrossRefGoogle ScholarPubMed
56Simon, RP, Aminoff, MJ, Benowitz, NL. Changes in plasma catecholamines after tonic-clonic seizures. Neurology 1984; 34: 255–57.CrossRefGoogle ScholarPubMed
57Nguyen-Lam, J, Kiernan, MC. Acute cortical blindness due to posterior reversible encephalopathy. J Clin Neurosci 2008; 15: 1182–185.CrossRefGoogle ScholarPubMed
58Wagner, K, Klienholz, M, de Courten-Myers, G, Myers, R. Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size. J Cereb Blood Flow Metab 1992; 12: 213–22.Google Scholar
59Betz, AL, Dietrich, WD. Blood-brain barrier dysfunction in cerebral ischaemia. In: Ginsberg, MD, Bogousslavsky, J (eds.) Cerebrovascular Disease: Pathophysiology, Diagnosis and Management Blackwell Science, Malden, MA; 1998, 358370.Google Scholar
60Wahl, M, Unterberg, A, Baethmann, A, Schilling, L. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 1988; 8: 621634.CrossRefGoogle ScholarPubMed
61Roberts, TJ, Chapman, AC, Cipolla, MJ. PPAR-gamma agonist rosiglitazone reverses increased cerebral venous hydraulic conductivity during hypertension. Am J Physiol Heart Circ Physiol 2009; 297: H1347H1353.CrossRefGoogle ScholarPubMed
62Dinsdale, HB, Mohr, JP. Hypertensive Encephalopathy. In: Barnett Henry, JM, Mohr, JP, Bennet, M, Stein Bennet, M, Yatsu Frank, M. (eds). Stroke. Pathophysiology, Diagnosis and Management 3rd edition. Churchill Livingston, New York, NY; 869874Google Scholar
63Cipolla, MJ. Stroke and the Blood-Brain Interface. In: Spray, D, Dermietzel, R, Nedergaard, M (eds) Blood-brain Barrier Interfaces. Wiley Press, Weinheim, 2006; 159Google Scholar
64Pavlovsky, L, Seiffert, E, Heinemann, U, Korn, A, Golan, H, Friedman, A. Persistent BBB disruption may underlie alpha interferon-induced seizures. J Neurol 2005; 252: 4246.CrossRefGoogle ScholarPubMed
65Marchi, N, Teng, Q, Ghosh, C, Fan, Q, Nguyen, MT, Desai, NK et al. . Blood-brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 2010; 1353: 176–86.CrossRefGoogle Scholar
66van Vliet, EA, da Costa Araújo, S, Redeker, S, van Schaik, R, Aronica, E, Gorter, JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007; 130: 521534.Google Scholar
67Nag, S, Robertson, DM, Dinsdale, HB. Quantitative estimate of pinocytosis in experimental acute hypertension. Acta Neuropathol (Berl) 1979; 46: 107–16.CrossRefGoogle ScholarPubMed
68Cipolla, MJ, Crete, R, Vitullo, L, Rix, RD. Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Front Biosci 2004; 9: 777–85.CrossRefGoogle ScholarPubMed
69Blum, MS, Toninelli, E, Anderson, JM, Balda, MS, Zhou, J, O'Donnel, L et al. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 1997; 273: H286H294.Google Scholar
70Rubin, LL, Staddon, JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 1128.Google Scholar
71Kniesel, U, Wolburg, H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 2000; 20: 5776.Google Scholar
72Hofman, P, Blaauwgeers, HG, Tolentino, MJ, Adamis, AP, Nunes Cardozo, BJ, Vrensen, GF et al. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenstrations. Curr Eye Res 2000; 21: 637–45.CrossRefGoogle ScholarPubMed
73Fischer, S, Wiesnet, M, Marti, HH, Renz, D, Schaper, W. Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol 2004; 198: 359–69.CrossRefGoogle ScholarPubMed
74Amburgey, OA, Chapman, AC, May, V, Bernstein, IM, Cipolla, MJ. Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling. Hypertension 2010; 56: 10031008.Google Scholar
75Cipolla, MJ. The Cerebral Circulation. In: Granger, DN, Granger, J (eds) Integrated Systems Physiology – from Molecule to Function. Morgan & Claypool Life Sciences Publishers, San Rafael, CA, 2009; 159Google Scholar
76Matthiesen, L, Berg, G, Ernerudh, J, Ekerfelt, C, Jonsson, Y, Sharma, S. Immunology of preeclampsia. Chem Immunol Allergy 2005; 89: 4961.Google Scholar
77Cackovic, M, Buhimschi, CS, Zhao, G, Funai, EF, Norwitz, ER, Kuczynski, E et al. Fractional excretion of tumor necrosis factor-alpha in women with severe preeclampsia. Obstet Gynecol 2008; 112: 93100.Google Scholar
78Jonsson, Y, Rubèr, M, Matthiesen, L, Berg, G, Nieminen, K, Sharma, S et al. Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol 2006; 70: 8391.CrossRefGoogle ScholarPubMed
79Pan, W, Csernus, B, Kastin, AJ. Upregulation of p55 and p75 receptors mediating TNF-alpha transport across the injured blood-spinal cord barrier. J Mol Neurosci 2003; 21: 173–84.Google Scholar
80Pan, W, Kastin, AJ. Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog Neurobiol 2007; 83: 363374.Google Scholar
81Oppenheim, JJ, Feldmann, M. Introduction to the role of cytokines in innate host defense and adaptive immunity. In: Oppenheim, JJ, Feldmann, M (eds) Cytokine Reference, Vol. 1 New York, Academic Press, 2001; 320.Google Scholar
82Riazi, K, Galic, MA, Kuzmiski, JB, Ho, W, Sharkey, KA, Pittman, QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 2008; 105: 17151–7156.Google Scholar
83D'Mello, C, Le, T, Swain, MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor-alpha signaling during peripheral organ inflammation. J Neurosci 2009; 29: 2089–102.Google Scholar
84Rossi, B, Angiari, S, Zenaro, E, Budui, SL, Constantin, G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 2010; Dec 17. Doi:10.1189/jlb.0710432.Google Scholar
85Stellwagen, D, Beattie, EC, Seo, JY, Malenka, RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005; 25: 3219–228.CrossRefGoogle ScholarPubMed
86Ishibashi, K, Kuwahara, M, Sasaki, S. Molecular biology of aquaporins. Rev Physiol Biochem Pharmacol 2000; 141: 132.Google Scholar
87Agre, P, Bonhivers, M, Borgnia, MJ. The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 1998; 273: 14659–4662.Google Scholar
88Verkman, AS. Aquaporin water channels and endothelial cell function. J Anat 2002; 200: 617–27.Google Scholar
89Amiry-Moghaddam, M, Ottersen, OP. The molecular basis of water transport in the brain. Nature Reviews Neuroscience 2003; 4: 9911001.Google Scholar
90Hasegawa, H, Ma, T, Skach, W, Matthay, MA, Verkman, AS. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 1994; 269: 5497–500.Google Scholar
91Jung, JS, Bhat, RV, Preston, GM, Guggino, WB, Baraban, JM, Agre, P. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA 1994; 91: 13052–3056.Google Scholar
92Nielsen, S, Nagelhus, EA, Amiry-Moghaddam, M, Bourque, C, Agre, P, Ottersen, OP. Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997; 17: 171–80.Google Scholar
93Amiry-Moghaddam, M, Xue, R, Haug, F-M, Neely, JD, Bhardwaj, A, Agre, P et al. Alpha syntrophin deletion removes the perivascular but not the endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 2004; 18: 542–44.Google Scholar
94Amiry-Moghaddam, M, Otuska, T, Hurn, PD, Traystman, RJ, Haug, F-M, Froehner, SC et al. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 2003; 100: 2106–111.Google Scholar
95Saadoun, S, Papadopoulos, MC, Davies, DC, Krishna, S, Bell, BA. Aquaporin-4 expression is increased in oedematous human brain tumors. J Neurol Neurosurg Psychiat 2002; 72: 262–65.CrossRefGoogle Scholar
96Taniguchi, M, Yamashita, T, Kumura, E, Tamatani, M, Kobayashi, A, Yokawa, T et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischaemia in rat. Mol Brain Res 2000; 78: 131–37.Google Scholar
97Manley, GT, Fujimura, M, Ma, T, Noshita, N, Filiz, F, Bollen, AW et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med 2000; 6: 159–63.Google Scholar
98Vizuete, ML, Venero, JL, Vargas, C, Ilundain, AA, Echevarria, M, Machado, A, Cano, J. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis 1999; 6: 245–58.Google Scholar
99Quick, AM, Cipolla, MJ. Pregnancy-induced upregulation of aquaporin-4 protein in brain and its role in eclampsia. FASEB J 2005; 19: 170–75.Google Scholar
100Wiegman, MJ, Bullinger, LV, Kohlmeyer, MM, Hunter, TC, Cipolla, MJ. Regional expression of aquaporin 1, 4, and 9 in the brain during pregnancy. Reprod Sci 2008; 15: 506–16.Google Scholar
101Binder, DK, Yao, X, Verkman, AS, Manley, GT. Increased seizure duration in mice lacking aquaporin-4 water channels. Acta Neurochir Suppl 2006; 96: 389–92.CrossRefGoogle ScholarPubMed
102Myatt, L, Webster, RP. Vascular biology of preeclampsia. J Thromb Haemost 2009; 7: 375–84.CrossRefGoogle ScholarPubMed
103Sankaralingam, S, Xu, Y, Sawamura, T, Davidge, ST. Increased lectin-like oxidized low-density lipoprotein receptor-1 expression in the maternal vasculature of women with preeclampsia: role for peroxynitrite. Hypertension 2009; 53: 270–77.CrossRefGoogle ScholarPubMed
104Roberts, JM, Hubel, CA. Oxidative stress in preeclampsia. Am J Obstet Gynecol 2004; 190: 1177–178.CrossRefGoogle ScholarPubMed
105Shaner, MD. Neurological Problems of Pregnancy. In: Bradley, WG, Daroff, RB, Fenichel, GM, Marsden, CD (eds) Neurology in Clinical Practice. Edited by Third Ed. Vol. II, Butterworth-Heinemann, Boston, 2000; 2257–267.Google Scholar
106Aukes, AM, de Groot, JC, Aarnoudse, JG, Zeeman, GG. Brain lesions several years after eclampsia. Am J Obstet Gynecol 2009; 200: 504.e1–5.Google Scholar
107Aukes, AM, Wessel, I, Dubois, AM, Aarnoudse, JG, Zeeman, GG. Self-reported cognitive functioning in formerly eclamptic women. Am J Obstet Gynecol 2007; 197: 365.e1–6.CrossRefGoogle ScholarPubMed
108Postma, IR, Wessel, I, Aarnoudse, JG, Zeeman, GG. Neurocognitive functioning in women with a history of eclampsia: executive functioning and sustained attention. Am J Perinatol 2010; 27: 685–90.CrossRefGoogle ScholarPubMed
109Lucas, MJ, Leveno, KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201205.Google Scholar
110Chien, PFW, Khan, KS, Arnott, N. Magnesium sulphate in the treatment of eclampsia and pre-eclampsia: An overview of the evidence from randomised trials. Br J Obstet Gynaecol 1996; 103: 10851091.CrossRefGoogle ScholarPubMed
111Duley, L, Henderson-Smart, D. Magnesium sulphate versus diazepam for eclampsia. Cochrane Database Syst Rev 2003; 4.Google Scholar
112Ramanathan, J, Sibai, BM, Pillai, R, Angel, JJ. Neuromuscular transmission studies in preeclamptic women receiving magnesium sulfate. Am J Obstet Gynecol 1988; 158: 4046.CrossRefGoogle ScholarPubMed
113Pritchard, JA, Cunningham, FG, Pritchard, SA. The Parkland Memorial Hospital protocol for treatment of eclampsia: Evalauation of 235 cases. Am J Obstet Gynecol 1984; 148: 951–60.Google Scholar
114Altura, BM, Altura, BT, Carella, A, Gebrewold, A, Murakawa, T, Nishio, A. Mg2+ – Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol 1987; 65: 729–45.Google Scholar
115Euser, AG, Cipolla, MJ. Resistance artery vasodilation to magnesium sulfate during pregnancy and the postpartum state. Am J Physiol Heart Circ Physiol 2005; 288: H1521H1525.Google Scholar
116Euser, AG, Bullinger, L, Cipolla, MJ. Magnesium sulphate treatment decreases blood brain barrier permeability during acute hypertension in pregnant rats. Exp Physiol 2008; 93: 254–61.CrossRefGoogle ScholarPubMed
117Hallak, M, Berman, RF, Irtenkauf, SM, Janusz, C, Cotton, DB. Magnesium sulfate treatment decreases N-methyl-D-aspartate receptor binding in the rat brain: An autoradiographic study. J Soc Gynecol Invest 1994; 1: 2530.Google Scholar