Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T23:26:23.829Z Has data issue: false hasContentIssue false

The estimation of genotypic probabilities in an adult population by the analysis of descendants

Published online by Cambridge University Press:  14 April 2009

Antonio Barbadilla*
Affiliation:
Departament de Genèlica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Horacio Naveira
Affiliation:
Departament de Genèlica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Alfredo Ruiz
Affiliation:
Departament de Genèlica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Mauro Santos
Affiliation:
Departament de Genèlica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are instances, the most typical being inversion polymorphism in Drosophila, where the genotype is not directly accessible in the adult organism, but can be observed in young life-stages. In these cases, if we want to estimate genotypic probabilities in adult populations, we must examine an offspring sample from adults. In this paper we derive the maximum likelihood estimators, and their errors, for genotypic probabilities in an adult population, according to a standard protocol in which collected parents of a random sample are individually crossed with individuals of a laboratory stock with known homozygous genotype, and a fixed number of their offspring is genetically examined in young life-stages. Arnold's probabilistic model for one locus with two alleles is developed for our estimates. An optimum design which generates a minimum variance is proposed, consisting of examining a moderate offspring number (3–4) per parent. Finally, we propose maximum likelihood estimates when several samples with different numbers of parents per sample, and/or examined progeny per parent are obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Arnold, J. (1981). Statistics of natural populations. I. estimating an allele probability in cryptic fathers with a fixed number of offspring. Biometrics 37, 495504.Google Scholar
Arnold, J. & Morrison, M. L. (1985). Statistics of natural populations. II. Estimating an allele probability in families descended from cryptic mothers. Genetics 109, 785798.Google Scholar
Bailey, N. T. J. (1951). Testing the solubility of maximum likelihood equations in the routine application of scoring methods. Biometrics 7, 268274.Google Scholar
Barbadilla, A. & Naveira, H. (1988). The estimation of parental genotypes by the analysis of a fixed number of their offspring. Genetics 119, 465472.CrossRefGoogle ScholarPubMed
Barbadilla, A., Quezada-Diaz, J. E., Ruiz, A., Santos, M. & Fontdevila, A. (1991). The natural history of Drosophila buzzatii. XVII. Double mating and sperm predominance. Genetics, Selection, Evolution 23, 133140.CrossRefGoogle Scholar
Barbadilla, A., Ruiz, A., Santos, M. & Fontdevila, A. (1992). Analysis of adult selection components associated with inversion polymorphism in a natural population of Drosophila buzzatii (submitted).Google Scholar
Christiansen, F. B. & Frydenberg, O. (1973). Selection components analysis of natural polymorphisms using population samples including mother-child combinations. Theoretical Population Biology 4, 425445.CrossRefGoogle Scholar
Dixon, W. J. (ed.). BMDP Statistical Software, pp. 721738. Manual University of California Press, California.Google Scholar
Dobzhansky, Th. (1944). Chromosomes races in Drosophila pseudoobscura and Drosophila persimilis, pp. 47114. Publication No. 554. Washington D.C.: Carnegie Institution.Google Scholar
Dobzhansky, Th. & Epling, C. (1944). Contributions to the Genetics, Taxonomy, and Ecology of Drosophila pseudoobscura and its Relatives. Publication No. 554. Washington D.C.: Carnegie Institution.Google Scholar
Dobzhansky, Th. & Levene, H. (1948). The genetics of natural populations. XVII. Proof of operation of natural selection in wild populations of Drosophila pseudoobscura. Genetics 33, 537547.Google Scholar
Krimbas, C. B. & Loukas, M. (1980). The inversion polymorphism of Drosophila subobscura. Evolutionary Biology 12, 402416.Google Scholar
Li, C. C. (1970). The incomplete binomial distribution. Mathematical Topics in Population Genetics (ed. Kojima, K.), pp. 337366. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Luykx, P. (1981). A sex-linked esterase locus and translocation heterozygosity in a termite. Heredity 46,315320.Google Scholar
Manly, B. F. J. (1985). The Statistics of Natural Selection. London: Chapman and Hall.Google Scholar
Mantel, N. (1951). Evaluation of a class of diagnosis tests. Biometrics 7, 240246.Google Scholar
Naveira, H. & Fontdevila, A. (1985). The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91, 8794.Google Scholar
Prevosti, A. (1966). Inversion heterozygosity and size in a natural population of Drosophila subobscura. Mutation in Population, Proceedings of the Symposium on the Mutational Process, pp. 4953. Praha: Publishing House of the Czechoslovak Academy of Sciences.Google Scholar
Ruiz, A., Naveira, H. & Fontdevila, A. (1984). La historia evolutiva deDrosophila buzzatii. IV. Aspectos citogeneticos de su polimorfismo cromosdmico. Genetica Iberica 36, 1335.Google Scholar
Ruiz, A., Fontdevila, A., Santos, M., Seoane, M. & Torroja, E. (1986). The evolutionary history of D. buzzatii. VIII. Evidence for endocyclic selection acting on the inversion polymorphism in a natural population. Evolution 40, 740755.Google Scholar
Ruiz, A., Santos, M., Barbadilla, A., Quezada-Diaz, J. E., Hasson, E. & Fontdevila, A. (1991). Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics 128, 739750.CrossRefGoogle Scholar
Salceda, V. M. & Anderson, W. W. (1988). Rare male mating advantage in a natural population of Drosophila pseudoobscura. Proceedings of the National Academy of Sciences U.S.A. 85, 98709874.CrossRefGoogle Scholar
Samollow, P. B., Dawson, P. S. & Riddle, R. A. (1983). Xlinked and autosomal inheritance patterns of homologous genes in two species of Tribolium. Biochemical Genetics 21, 167176.Google ScholarPubMed
Selander, R. K. (1970). Behavior and genetic variation in natural population (Mus musculus). American Zoologist 10, 5366.Google Scholar
Sobel, M. J., Arnold, J. & Sobel, M. (1986). Statistics of natural populations. III. Sequential sampling plans for the estimation of gene frequencies. Biometrics 42, 4565.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry, 2nd edn.San Francisco: Freeman.Google Scholar
Stalker, H. D. (1976). Chromosome studies in wild population of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95, 211223.CrossRefGoogle Scholar
Weir, B. S. (1990). Genetic Data Analysis. Sunderland: Sinauer Associates.Google Scholar
White, M. J. D. & Andrew, L. E. (1960). Cytogenetics of the grasshopper Moraba scurra. V. Biometric effect of chromosomal inversions. Evolution 14, 284292.Google Scholar
White, M. J. D & Andrew, L. E. (1962). Effects of chromosomal inversions on size and relative viability in the grasshopper Moraba scurra. The Evolution of Living Organisms (ed. Leeper, G. W.), pp. 94101. Melbourne: Melbourne University Press.Google Scholar