Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T18:17:49.368Z Has data issue: false hasContentIssue false

Mutants affecting amino acid cross-pathway control in Neurospora crassa

Published online by Cambridge University Press:  14 April 2009

Ilse B. Barthelmess
Affiliation:
Institut für Angewandte Genetik, Universität Hannover, D 3000 Hannover, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Arginine-requiring mutants of Neurospora crassa were isolated using a strain partially impaired in an enzyme of the arginine pathway (bradytroph). Among these, five strains were found which carry mutations at a new locus, cpc-1+. The recessive cpc-1 alleles interfere with the cross-pathway control of amino acid biosynthetic enzymes. The enzymes studied, three of arginine and one each of histidine and lysine biosynthesis, fail to derepress under conditions which normally result in elevation of enzyme concentration, namely arginine, histidine or tryptophan limitation. Enzymes not involved in amino acid biosynthesis are still able to derepress in the presence of cpc-1. In wild-type backgound, i.e. with the bradytroph replaced, cpc-1 strains lose the original arginine-requirement. cpc-1 mutations confer sensitivity of growth to 3-amino-1,2,4-triazole.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Albrecht, A. M. & Vogel, H. J. (1964). Acetylornithine δ-transaminase. Partial purification and repression behavior. Journal of Biological Chemistry 239, 18721876.CrossRefGoogle ScholarPubMed
Ames, B. N. (1957). The biosynthesis of histidine; L-histidinol phosphate phosphatase. Journal of Biological Chemistry 226, 583593.CrossRefGoogle ScholarPubMed
Barthelmess, I. B., Curtis, C. F. & Kacser, H. (1974). Control of the flux to arginine in Neurospora crassa: De-repression of the last three enzymes of the arginine pathway. Journal of Molecular Biology 87, 303316.CrossRefGoogle ScholarPubMed
Carsiotis, M. & Lacy, A. M. (1965). Increased activity of tryptophan biosynthetic enzymes in histidine mutants of Neurospora crassa. Journal of Bacteriology 89, 14721477.Google ScholarPubMed
Carsiotis, M., Jones, R. F., Lacy, A. M., Cleary, T. J. & Fankhauser, D. B. (1970). Histidine-mediated control of tryptophan biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 104, 98106.CrossRefGoogle ScholarPubMed
Carsiotis, M. & Jones, R. F. (1974). Cross-pathway regulation: Tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 119, 889892.CrossRefGoogle ScholarPubMed
Carsiotis, M., Jones, R. F. & Wesseling, A. C. (1974). Cross-pathway regulation: Histidine-mediated control of histidine, tryptophan and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 119, 893898.CrossRefGoogle ScholarPubMed
Cybis, J. & Davis, R. H. (1975). Organization and control in the arginine biosynthetic pathway of Neurospora. Journal of Bacteriology 123, 196202.CrossRefGoogle ScholarPubMed
Davis, R. H. (1960). An enzyme difference among pyr-3 mutants of Neurospora crassa. Proceedings of the National Academy of Science, U.S.A. 46, 677682.CrossRefGoogle Scholar
Davis, R. H. (1962 a). Consequences of a suppressor gene effective with pyrimidine and proline mutants of Neurospora. Genetics 47, 351360.CrossRefGoogle ScholarPubMed
Davis, R. H. (1962 b). A mutant form of ornithine transcarbamylase found in a strain of Neurospora carrying a pyrimidine-proline suppressor gene. Archives of Biochemistry and Biophysics 97, 185191.Google Scholar
Davis, R. H. (1979). Genetics of arginine biosynthesis in Neurospora crassa. Genetics 93, 557575.Google ScholarPubMed
Fink, G. R. (1964). Gene–enzyme relations in histidine biosynthesis in yeast. Science 146, 525527.CrossRefGoogle ScholarPubMed
Flavell, R. B. & Fincham, J. R. S. (1968 a). Acetate-nonutilizing mutants of Neurospora crassa. I. Mutant isolation, complementation studies and linkage relationships. Journal of Bacteriology 95, 10561062.CrossRefGoogle Scholar
Flavell, R. B. & Fincham, J. R. S. (1968 b). Acetate-nonutilizing mutants of Neurospora crassa. II. Biochemical deficiencies and the roles of certain enzymes. Journal of Bacteriology 95, 10631068.CrossRefGoogle ScholarPubMed
Flint, H. J. & Kemp, B. F. (1981). General control of arginine biosynthetic enzymes in Neurospora crassa. Journal of General Microbiology 124. (In the Press.)Google ScholarPubMed
Hütter, R. & DeMoss, J. A. (1967). Organization of the tryptophan pathway: a phylogenetic study of the fungi. Journal of Bacteriology 94, 18961907.CrossRefGoogle ScholarPubMed
Lester, G. (1971). Regulation of tryptophan biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 107, 193202.CrossRefGoogle ScholarPubMed
Littlewood, B. S., Chia, W. & Metzenberg, R. L. (1975). Genetic control of phosphate-metabolizing enzymes in Neurospora crassa: Relationships among regulatory mutants. Genetics 79, 419434.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Martin, R. G., Berberich, M. A., Ames, B. N., Davis, W. W., Goldberger, R. F. & Yourno, J. D. (1971). Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium. Methods in Enzymology 17B pp. 344. ed. Tabor, H. & Tabor, C.Google Scholar
Messenguy, F. (1979). Concerted repression of the synthesis of the arginine biosynthetic enzymes by amino acids: a comparison between the regulatory mechanisms controlling amino acid biosynthesis in bacteria and in yeast. Molecular and general Genetics 169, 8595.Google ScholarPubMed
Piotrowska, M. (1980). Cross-pathway regulation of ornithine carbamoyltransferase synthesis in Aspergillus nidulans. Journal of General Microbiology 116, 335339.Google Scholar
Saunders, P. P. & Broquist, H. P. (1966). Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. Journal of Biological Chemistry 241, 34353440.CrossRefGoogle ScholarPubMed
Sohürch, A. R. (1972). Zur Regulation der Tryptophan-Biosynthese. Diss. Nr. 4862, Zurich.Google Scholar
Schürch, A., Miozzari, J. & Hütter, R. (1974). Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophansensitive mutants. Journal of Bacteriology 117, 11311140.CrossRefGoogle ScholarPubMed
Staub, M. & Dénes, G. (1966). Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. I. Purification and properties of ornithine acetyltransferase. Biochimica et biophysica acta 128, 8291.CrossRefGoogle ScholarPubMed
Vogel, H. J. (1964). Distribution of lysine among fungi: evolutionary implications. American Naturalist 98, 435446.CrossRefGoogle Scholar
Wesseling, A. C. & Carsiotis, M. (1973). Arginine mutants of Neurospora crossa: Amino acid cross-pathway regulation. Abstract, Annual Meeting of the American Society for Microbiology, P 69, p. 152.Google Scholar
Wesseling, A. C. & Carsiotis, M. (1974). Amino acid cross-pathway regulation in Neurospora crossa: Involvement of nitrogen-rich amino acids. Abstract, Annual Meeting of the American Society for Microbiology, P 288, p, 192.Google Scholar
Wolf, E. C. & Weiss, R. L. (1980). Acetylglutamate kinase: A mitochondrial feed-back sensitive enzyme of arginine biosynthesis in Neurospora crassa. Journal of Biological Chemistry 255, 91899195.CrossRefGoogle Scholar
Wolfner, M., Yep, D., Messenguy, F. & Fink, G. R. (1975). Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. Journal of Molecular Biology 96, 273290.CrossRefGoogle ScholarPubMed