Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T15:02:27.830Z Has data issue: false hasContentIssue false

The role of passive migration in the dispersal of resistance genes in Culex pipiens quinquefasciatus within French Polynesia

Published online by Cambridge University Press:  14 April 2009

Nicole Pasteur*
Affiliation:
Institut des Sciences de l'Evolution (CNRS URA 327), Laboratoire de Génétique et Environment, Université de Montpellier II (Case courrier 065), Place E. Bataillon, 34095 Montellier, France
Maité Marquine
Affiliation:
Institut des Sciences de l'Evolution (CNRS URA 327), Laboratoire de Génétique et Environment, Université de Montpellier II (Case courrier 065), Place E. Bataillon, 34095 Montellier, France
François Rousset
Affiliation:
Institut des Sciences de l'Evolution (CNRS URA 327), Laboratoire de Génétique et Environment, Université de Montpellier II (Case courrier 065), Place E. Bataillon, 34095 Montellier, France
Anna-Bella Failloux
Affiliation:
Institut Territorial de Recherches Médicales Louis Mallardé, B. P. 30, Papeete, Tahiti, Polynésie, française
Christine Chevillon
Affiliation:
Institut des Sciences de l'Evolution (CNRS URA 327), Laboratoire de Génétique et Environment, Université de Montpellier II (Case courrier 065), Place E. Bataillon, 34095 Montellier, France
Michel Raymond
Affiliation:
Institut des Sciences de l'Evolution (CNRS URA 327), Laboratoire de Génétique et Environment, Université de Montpellier II (Case courrier 065), Place E. Bataillon, 34095 Montellier, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have investigated the distribution of resistance genes in relation to genetic structure and gene flow between various islands of French Polynesia in Culex pipiens quinquefasciatus. We show that (1) resistance to organophosphorous insecticides, mediated by A2–B2 esterases, is present in all islands, (2) A2–B2 frequency decreases as distance from Tahiti increases, and (3) genetic differentiation (measured as estimates of the Fst, parameter from allozyme polymorphism) between islands is significantly correlated to geographic distances which is also correlated to air or sea commercial traffic. These data are discussed in relation to A2–B2 invasion of French Polynesian islands.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

REFERENCES

Atlas de la Polynésie Française (1993). ORSTOM editions, Paris, France.Google Scholar
Ben Cheikh, H. & Pasteur, N. (1993). Resistance to temephos, an organophosphorous insecticide, in Culex pipiens from Tunisia, North Africa. Journal of the American Mosquito Control Association 9, 335337.Google ScholarPubMed
Chevillon, C., Pasteur, N., Marquine, M., Heyse, D. & Raymond, M. (1995). Population structure and dynamics of selected genes in the mosquito Culex pipiens. Evolution (in the press).CrossRefGoogle Scholar
Chungue, E. C., Burucoa, C., Boutin, J.-P., Philippon, G., Laudon, F., Plichart, R., Barbazan, P., Cardines, R. & Roux, J. (1991) Dengue I epidemics in French Polynesia, 1988–89: surveillance and clinical, epidemiological, virological and serological findings in 1752 documented clinical cases. Transactions of the Royal Society, Tropical Medicine and Hygiene 86, 193197.Google Scholar
Craven, R. B., Eliason, D. A., Francq, D. B., Reiter, P., Campos, E. G., Jakob, W. L., Smith, G. C., Bozzi, C. J., Moore, C. G., Maupin, G. O. & Monath, T. P. (1988). Importation of Aedes albopictus and other exotic species into the United States in used tires from Asia. Journal of the American Mosquito Control Association 4, 138141.Google ScholarPubMed
Curtis, C. F. & White, G. B. (1984). Plasmodium falciparum transmission in England: entomological and epidemiological data relative to cases in 1983. Journal of Tropical Medicine and Hygiene 87, 101194.Google ScholarPubMed
Failloux, A. B., Ung, A., Raymond, M. & Pasteur, N. (1994). Insecticide susceptibility in mosquitoes from Polynesia. Journal of Medical Entomology 31, 639644.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1970). Statistical Methods for Research Workers, 14th Edit.Edinburgh: Oliver and Boyd.Google Scholar
Georghiou, G. P., Metcalf, R. L. & Gidden, F. E. (1966). Carbamate resistance in mosquitoes: selection of Culex pipiens fatigans Wied. (= Culex quinquefasciatus) for resistance to Baygon. Bulletin of the World Health Organisation 35, 691708.Google Scholar
Georghiou, G. P. & Pasteur, N. (1978). Electrophoretic pattern in insecticide resistant and susceptible mosquitoes. Journal of Economic Entomology 7, 201205.CrossRefGoogle Scholar
Hartl, D. L. & Clark, A. G. (1989). Principles of Population Genetics. Sunderland (Mass., USA): Sinauer Publishing.Google Scholar
Highton, R. B. & Van Someren, E. C. C. (1970). The transportation of mosquitoes between international airports. Bulletin of the World Health Organisation 42, 334335.Google ScholarPubMed
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Leduc, A., Drapeau, P., Bergeron, Y. & Legendre, P. (1992). Study of spatial components of forest cover using partial Mantel tests and path analysis. Journal of Vegetation Sciences 3, 6978.CrossRefGoogle Scholar
Pasteur, N., Pasteur, G., Catalan, J., Bonhomme, F. & Britton-Davidian, J. (1988). Practical isozyme Genetics. Chichester, (England): John Willey and Sons/Ellis Horwood Ltd.Google Scholar
Qiao, C.-L. & Raymond, M. (1995). A same esterase B1 haplotype is amplified in insecticide resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity 74, 339345.CrossRefGoogle ScholarPubMed
Raymond, M., Callaghan, A., Fort, P. & Pasteur, N. (1991). Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350, 151153.CrossRefGoogle ScholarPubMed
Raymond, M., Fournier, D., Bergé, J. B., Cuany, A., Bride, J. M. & Pasteur, N. (1985). Single-mosquito test to determine genotypes with an acetylcholinesterase in-sensitive to inhibition to propoxur insecticide. Journal of the American Mosquito Control Association 1, 425427.Google Scholar
Raymond, M., Fournier, D., Bride, J. M., Cuany, A.. Bergé, J. B., Magnin, M. & Pasteur, N. (1986). Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: Insensitive acetylcholinesterase and detoxifying oxidases. Journal of Economic Entomology 79, 14521458.CrossRefGoogle Scholar
Raymond, M. & Marquine, M. (1994). Evolution of insecticide resistance in Culex pipiens populations: the Corsican paradox. Journal of Evolutionary Biology 7, 315337.CrossRefGoogle Scholar
Raymond, M., Pasteur, N., Georghiou, G. P., Mellon, R. B., Wirth, M. C. & Hawley, M. (1987). Detoxification esterases new to California in organophosphate resistant Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology 24, 2427.CrossRefGoogle ScholarPubMed
Raymond, M., Poulin, E., Boiroux, V., Dupont, E. & Pasteur, N. (1993 b). Stability of insecticide resistance due to amplification of esterase genes in culex pipiens. Heredity 70, 301307.CrossRefGoogle Scholar
Raymond, M., Prato, G. & Ratsira, D. (1993 a). PROBIT. Analysis of mortality assays displaying quantal response, version 3·3. Praxeme Sari, 19 Avenue de Montpellier, 34680 Saint-Georges d'Orques.Google Scholar
Raymond, M. & Rousset, F. (1995). GENEPOP (ver. 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rousset, F. & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics (in the press).CrossRefGoogle Scholar
Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264279.CrossRefGoogle ScholarPubMed
Smouse, P. E., Long, J. C. & Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35, 627632.CrossRefGoogle Scholar
Van Dine, D. L. (1904). Mosquitoes in Hawaii. Bulletin of the Hawaii Agriculture Experimental Station 6, 730.Google Scholar
Weir, B. S. & Cockerham, C. C. (1984). Estimating F- statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Wirth, M. C., Marquine, M., Georghiou, G. P. & Pasteur, N. (1990). Esterases A2 and B2 in Culex quinquefasciatus (Diptera: Culicidae): role in organophosphate resistance and linkage studies. Journal of Medical Entomology 27, 202206.CrossRefGoogle Scholar
Wright, S. (1969). Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. Chicago (IL, USA): University Chicago Press.Google Scholar
Xu, J., Qu, F. & Liu, W. (1994). Diversity of amplified esterase B genes responsible for organophosphate resistance in Culex quinquefasciatus from China. J. Med. Coll. PLA 9, 2023.Google Scholar