Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T15:24:04.840Z Has data issue: false hasContentIssue false

The time course of recombinant production in Streptomyces coelicolor

Published online by Cambridge University Press:  14 April 2009

G. Sermonti
Affiliation:
Istituto di Genetica, Università di Palermo, Italy
A. Maria Puglia
Affiliation:
Istituto di Genetica, Università di Palermo, Italy
Giuseppina Ficarra
Affiliation:
Istituto di Genetica, Università di Palermo, Italy
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The process leading to gene recombination can be interrupted in the filamentous bacteria Streptomyces coelicolor by growing mixed cultures on cellophane disks lying on complete medium. The mycelium is harvested, broken, diluted and the broken hyphae plated at different time intervals. By this means some markers can be excluded from heteroclones or from recombinant progeny in early samples. The recombinant pattern clearly changes with time, with an increase of markers contributed to the recombinant progeny. In crosses between male (NF) and female (UF) strains, the maleness is the first donor trait to appear in the cells of the recipient parent. The fertility factor does not produce a transfer origin on the donor chromosomes; the donor contribution may extend on either side or on both sides of the factor which appears to be compulsory for zygote formation. The longer the time of contact between parental cells, the longer the segment of the donor chromosome contributing to the recombinant progeny. When spores are formed they contain almost exclusively recombinant nuclei derived from segregation processes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Curtiss, R. III & Renshaw, J. (1969). Kinetics of F transfer and recombinant production in F+ × F- niatings in Escherichia coli K 12. Genetics 63, 3952.CrossRefGoogle Scholar
Holloway, B. W. (1969). Genetics of Pseudomonas. Bacteriological Reviews 33, 419443.CrossRefGoogle ScholarPubMed
Hopwood, D. A. (1966). Lack of constant genome ends in Streptomyces coelicolor. Genetics 54, 11771184.CrossRefGoogle ScholarPubMed
Hopwood, D. A. (1967). Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriological Reviews 31, 373403.CrossRefGoogle ScholarPubMed
Hopwood, D. A., Harold, R. J., Vivian, A. & Ferguson, H. M. (1969). A new kind of fertility variants in Streptomyces coelicolor. Genetics 62, 461477.CrossRefGoogle ScholarPubMed
Hopwood, D. A. & Sermonti, G. (1962). The genetics of Streptomyces coelicolor. Advances in Genetics 11, 273.CrossRefGoogle Scholar
Hopwood, D. A., Sermonti, G. & Spada-Sermonti, I. (1963). Heterozygous clones in Streptomyces coelicolor. Journal of General Microbiology 30, 249260.CrossRefGoogle ScholarPubMed
Kutzner, H. J. & Waksman, S. A. (1959). Streptomyces coelicolor Muller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. Journal of Bacteriology 78, 528538.CrossRefGoogle Scholar
Loutit, J. S., Marinus, M. G. & Pearce, L. E. (1968). Investigation of the mating system of Pseudomonas aeruginosa strain I. III. Kinetics studies on the transfer of sex factor FP. Genetical Research 12, 139145.CrossRefGoogle Scholar
Piperno, R., Carere, A. & Sermonti, G. (1966). Polarized recombination in Streptomyces coelicolor. Annali dell'Istituto Superiore di Sanità 2, 393–370.Google ScholarPubMed
Sermonti, G. (1969). Fertility system and genome transfer in Streptomyces coelicolor. In Genetics and Breeding of Streptomyces. Proc. International Symposium, Dubrovnik. Yugoslav Academy of Sciences and Arts, Zagreb, pp. 2125.Google Scholar
Sermonti, G., Bandiera, M. & Spada-Sermonti, I. (1966). New approach to the genetics of Streptomyces coelicolor. Journal of Bacteriology 91, 384392.CrossRefGoogle Scholar
Sermonti, G. & Casciano, S. (1963). Sexual polarity in Streptomyces coelicolor. Journal of General Microbiology 33, 293301.CrossRefGoogle ScholarPubMed
Sermonti, G., Mancinelli, A. & Spada-Sermonti, I. (1960). Heterogeneous clones (‘heteroclones’) in Streptomyces coelicolor A 3(2). Genetics 45, 669672.CrossRefGoogle Scholar
Spada-Sermonti, I. & Sermonti, G. (1970). Fertilization in Streptomyces coelicolor. In Genetics of Industrial Microorganisms, Abstract Book, Prague, pp. 34–35.Google Scholar
Vivian, A. (1970). Fertility variants in Streptomyces coelicolor. In Genetics of Industrial Microorganisms, Abstract Book, Prague, pp. 3637.Google Scholar
Vivian, A. & Hopwood, D. A. (1970). Genetic control of fertility in Streptomyces coelicolor A 3(2): the IF Fertility type. Journal of General Microbiology 64, 101117.CrossRefGoogle Scholar
Wollman, E. L., Jacob, F. & Hayes, W. (1956). Conjugation and genetic recombination in Escherichia coli K 12. Cold Spring Harbor Symposia on Quantitative Biology 21, 141162.CrossRefGoogle ScholarPubMed