Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-23T03:29:42.364Z Has data issue: false hasContentIssue false

Crustal xenoliths from Tallante (Betic Cordillera, Spain): insights into the crust–mantle boundary

Published online by Cambridge University Press:  06 June 2013

Dipartimento di Fisica e Scienze della Terra, Università di Ferrara – Via Saragat 1, I44100 Ferrara, Italia
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna – Piazza di Porta S. Donato 1, I40126 Bologna, Italia
Istituto CNR di Geoscienze e Georisorse (IGG), Via Ferrata 1, I27100 Pavia, Italia
Author for correspondence:


The volcano of Tallante (Pliocene) in the Betic Cordillera (Spain) exhumed a heterogeneous xenolith association, including ultramafic mantle rocks and diverse crustal lithologies. The latter include metagabbroids and felsic rocks characterized by quartz-rich parageneses containing spinel ± garnet ± sillimanite ± feldspars. Pressure–temperature estimates for felsic xenoliths overlap (at 0.7–0.8 GPa) those recorded by the mantle-derived peridotite xenoliths. Therefore, we propose that an intimate association of interlayered crust and mantle lithologies characterizes the crust–mantle boundary in this area. This scenario conforms to evidence provided by the neighbouring massifs of Ronda and Beni Bousera (and by other peri-Mediterranean deep crust/mantle sections) where exhumation of fossil crust–mantle boundary reveals that this boundary is not sharp. The results are discussed on the basis of recent geophysical and petrological studies emphasizing that in non-cratonic regions the crust–mantle boundary is often characterized by a gradational nature showing inter-fingering of heterogeneous lithologies. Silica-rich melts formed within the crustal domains intruded the surrounding mantle and induced metasomatism. The resulting hybrid crust–mantle domains thus provide suitable sources for exotic magma types such as the Mediterranean lamproites.

Rapid Communication
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Afiri, A., Gueydan, F., Pitra, P., Essaifi, A. & Précigout, J. 2011. Oligo-Miocene exhumation of the Beni-Bousera peridotite through a lithosphere-scale extensional shear zone. Geodinamica Acta 24, 4960.Google Scholar
Andonaegui, P., Castiñeiras, V., González Cuadra, P., Arenas, R., Sánchez Martínez, S., Abati, J., Díaz García, F. & Martínez Catalán, J. R. 2012. The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–31, 8499.Google Scholar
Arai, S., Shimizu, Y. & Gervilla, F. 2003. Quartz diorite veins in a peridotite xenolith from Tallante, Spain: implications for reactions and survival of slab-derived SiO2-oversaturated melts in the upper mantle. Proceedings of the Japan Academy, Series B 79, 145–50.Google Scholar
Bastow, I. D., Owens, T. J., Helffrich, G. & Knapp, J. H. 2007. Spatial and temporal constraints on sources of seismic anisotropy: evidence from the Scottish Highlands. Geophysical Research Letters 34, L05305.Google Scholar
Beccaluva, L., Bianchini, G., Bonadiman, C., Siena, F. & Vaccaro, C. 2004. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos 75, 6787.Google Scholar
Beccaluva, L., Bianchini, G., Natali, C. & Siena, F. 2011. Geodynamic control on orogenic and anorogenic magmatic phases in Sardinia and Southern Spain: inferences for the Cenozoic evolution of the western Mediterranean. Lithos 123, 218–24.CrossRefGoogle Scholar
Bianchini, G., Beccaluva, L., Bonadiman, C., Nowell, G., Pearson, G., Siena, F. & Wilson, M. 2007. Evidence of diverse depletion and metasomatic events in harzburgite–lherzolite mantle xenoliths from the Iberian plate (Olot, NE Spain): implications for lithosphere accretionary processes. Lithos 94, 2545.CrossRefGoogle Scholar
Bianchini, G., Beccaluva, L., Bonadiman, C., Nowell, G.M., Pearson, D.G., Siena, F. & Wilson, M. 2010. Mantle metasomatism by melts of HIMU piclogite components: new insights from Fe lherzolite xenoliths (Calatrava Volcanic District, central Spain). In Petrological Evolution of the European Lithosphere Mantle (eds Coltorti, M., Downes, H., Grégoire, M. & O'Reilly, S. Y.), pp. 107–24. Geological Society of London, Special Publication no. 337.Google Scholar
Bianchini, G., Beccaluva, L., Nowell, G. M., Pearson, D. G. & Siena, F. 2011. Mantle xenoliths from Tallante (Betic Cordillera): insights into the multi-stage evolution of the south Iberian lithosphere. Lithos 124, 308–18.CrossRefGoogle Scholar
Braga, R., Giacomini, F., Messiga, B. & Tribuzio, R. 2001. The Sondalo Gabbroic complex (Central Alps, Northern Italy): evidence for emplacement of mantle-derived melts into amphibolite-facies metapelites. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 333–42.CrossRefGoogle Scholar
Braga, R. & Massonne, H.-J. 2012. H2O content of deep-seated orogenic continental crust: the Ulten Zone, Italian Alps. International Geology Review 54, 633–41.CrossRefGoogle Scholar
Brueckner, H. K. 1998. A sinking intrusion model for the introduction of garnet-bearing peridotites into continent collision orogens. Geology 26, 631–4.Google Scholar
Castro, A. & Gerya, T. V. 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138–48.CrossRefGoogle Scholar
Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelević, D. & Venturelli, G. 2009. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 6892.Google Scholar
Cook, F. A., White, D. J., Jones, A. G., Eaton, D. W. S., Hall, J. & Clowes, R. M. 2010. How the crust meets the mantle: lithoprobe perspectives on the Mohorovičić discontinuity and crust–mantle transition. Canadian Journal of Earth Sciences 47, 315–51.Google Scholar
De Larouzière, F. D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C. & Ott d'Estevou, P. 1988. The Betic segment of the lithospheric Trans-Alboran shear zone during the late Miocene. Tectonophysics 152, 4152.Google Scholar
Ferri, F., Burlini, L., Cesare, B. & Sassi, R. 2007. Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): experimental evidence up to partial melting. Earth and Planetary Science Letters 253, 239–53.Google Scholar
Gerya, T. V. & Yuen, D. A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth and Planetary Science Letters 212, 4762.CrossRefGoogle Scholar
Gorczyk, W., Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. 2007. Growth and mixing dynamics of mantle wedge plumes. Geology 35, 587–90.Google Scholar
Harris, L. B., Godin, L. & Yakymchuk, C. 2012. Regional shortening followed by channel flow induced collapse: a new mechanism for “dome and keel” geometries in Neoarchaean granite-greenstone terrains. Precambrian Research 212–13, 139–54.Google Scholar
Hermann, J., Müntener, O. & Günther, D. 2001. Differentiation of mafic magma in a continental crust-to-mantle transition zone. Journal of Petrology 42, 189206.CrossRefGoogle Scholar
Kogarko, L. N., Ryabchikov, I. D., Brey, G. P., Fernández Santin, S. & Pacheco, H. 2001. Mantle rocks uplifted to crustal levels: diffusion profiles in minerals of spinel-plagioclase lherzolites from Tallante, Spain. Geochemistry International 39, 355–71.Google Scholar
McDonough, W. F. & Sun, S.-S. 1995. Composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
Morishita, T., Arai, S., Ishida, Y., Tamura, A. & Gervilla, F. 2009. Constraints on the evolutionary history of aluminous mafic rocks in the Ronda peridotite massif (Spain) from trace-element compositions of clinopyroxene and garnet. Geochemical Journal 43, 191206.CrossRefGoogle Scholar
Musacchio, G., Zappone, A., Cassinis, R. & Scarascia, S. 1998. Petrographic interpretation of a complex seismic crust-mantle transition in the central-eastern Alps. Tectonophysics 294, 7588.Google Scholar
Nichols, G. T., Berry, R. F. & Green, D. H. 1992. Internally consistent gahnitic spinel–cordierite–garnet equilibria in the FMASHZn system; geothermobarometry and applications. Contributions to Mineralogy and Petrology 111, 362–77.Google Scholar
O'Reilly, S. Y. & Griffin, W. L. 2013. Moho vs crust–mantle boundary: evolution of an idea. Tectonophysics, published online 10 January 2013. doi: 10.1016/j.tecto.2012.12.031.Google Scholar
Powell, R., & Holland, T. J. B. 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79 120–33.Google Scholar
Prelevic, D., Jacob, D. E. & Foley, S. F. 2013. Recycling plus: a new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters 362, 187–97.Google Scholar
Puga, E., Fanning, M., Díaz de Federico, A., Nieto, J. M., Beccaluva, L., Bianchini, G. & Díaz Puga, M. A. 2011. Petrology, geochemistry and U–Pb geochronology of the Betic Ophiolites: inferences for Pangaea break-up and birth of the westernmost Tethys Ocean. Lithos 124, 255–72.Google Scholar
Quick, J. E., Sinigoi, S. & Mayer, A. 1995. Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy. Geology 23, 739–42.2.3.CO;2>CrossRefGoogle Scholar
Rampone, E., Vissers, R. L. M., Poggio, M., Scambelluri, M. & Zanetti, A. 2010. Melt migration and intrusion during exhumation of the Alboran lithosphere: the Tallante mantle xenolith record (Betic Cordillera, SE Spain). Journal of Petrology 51, 295325.Google Scholar
Rizzo, G., Piluso, E. & Morten, L. 2001. Phlogopite from the Serre ultramafic rocks, Central Calabria, Southern Italy. European Journal of Mineralogy 13, 1139–51.Google Scholar
Scarascia, S. & Cassinis, R. 1997. Crustal structure in the Central-Eastern Alpine sector: a revision of the available DSS data. Tectonophysics 271, 157–88.Google Scholar
Takahashi, E. & Kushiro, I. 1983. Melting of a dry peridotite at high pressures and temperatures and basalt magma genesis. American Mineralogist, 68, 859–79.Google Scholar
Taylor, S. R. & McLennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews in Geophysics 33, 241–65.CrossRefGoogle Scholar
Thompson Lundeen, M. 1978. Emplacement of the Ronda peridotite, Sierra Bermeja, Spain. Geological Society of America Bulletin 89, 172–80.2.0.CO;2>CrossRefGoogle Scholar
Tommasini, S., Avanzinelli, R. & Conticelli, S. 2011. The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth and Planetary Science Letters 301, 469–78.CrossRefGoogle Scholar
Tubía, J. M., Cuevas, J. & Esteban, J. J. 2004. Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination. Geology 32, 941–4.Google Scholar
Vauchez, A., Tommasi, A. & Mainprice, D. 2012. Fault (shear zones) in the Earth's mantle. Tectonophysics 558–9, 127.Google Scholar
Van der Wal, D. & Vissers, R. L. M. 1996. Structural petrology of the Ronda peridotite, SW Spain: deformation history. Journal of Petrology 37, 2343.Google Scholar
Vielzeuf, D. 1983. The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry. Contribution to Mineralogy and Petrology 82, 301–11.Google Scholar
Villaseca, C., Downes, H., Pin, C. & Barbero, L. 1999. Nature and composition of the lower continental crust in Central Spain and the granulite-granite linkage: inferences from granulitic xenoliths. Journal of Petrology 40, 1465–96.Google Scholar
Villaseca, C., Orejana, D., Paterson, B. A., Billstrom, K. & Pérez-Soba, C. 2007. Metaluminous pyroxene-bearing granulite xenoliths from the lower continental crust in central Spain: their role in the genesis of Hercynian I-type granites. European Journal of Mineralogy 19, 463–77.Google Scholar
Supplementary material: File

Bianchini Supplementary Material


Download Bianchini Supplementary Material(File)
File 60.9 KB