Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T20:25:12.275Z Has data issue: false hasContentIssue false

Derivation of A1-type granites by partial melting of newly underplated rocks related with the Tarim mantle plume

Published online by Cambridge University Press:  20 November 2017

YUPING SU*
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
JIANPING ZHENG
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
LILI LIANG*
Affiliation:
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
HONGKUN DAI
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
JUNHONG ZHAO
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
MING CHEN
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
XIANQUAN PING
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
ZIQI LIU
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
JIAN WANG
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
*
Author for correspondence: suyuping99@126.com (Y.P. Su) and lianglily99@126.com (L.L. Liang)
Author for correspondence: suyuping99@126.com (Y.P. Su) and lianglily99@126.com (L.L. Liang)

Abstract

The granitic rocks of the Tarim large igneous province (LIP) are temporally and spatially related to mafic intrusions. However, their tectonic setting and genetic relationship are debated. Here, we report geochemical, and zircon U–Pb–Hf isotopic results for three alkali feldspar granitic plutons in the Halajun area, western margin of the Tarim Block. Zircon U–Pb ages suggest these plutons were emplaced at 268–275 Ma, coeval with the neighbouring mafic–ultramafic complexes and syenitic rocks. These granitic rocks have high contents of SiO2, alkalis, Rb, Th, Zr and REE (except Eu), and high ratios of FeO*/MgO and Ga/Al, and show strong depletions in Ba, Sr, Eu, which are commonly observed in the A1-type granites. Zircon Hf isotopes reveal a limited range of εHf(t) values from −1.0 to +3.5 for different samples from three granitic plutons, obviously higher than those (mostly <0) of the mafic rocks. This distinct difference, along with a Daly gap and small volume of mafic rocks, argues against extreme fractionation of mafic magma as the main origin of the A1-type granites. Instead the A1-type granites were most likely derived from partial melting of newly underplated rocks triggered by the upwelling asthenosphere, followed by extensive fractionation. These A1-type granites were emplaced within an anorogenic setting during the late stage of the Tarim LIP, which possibly lasts for more than 30 Ma. The Piqiang mafic–ultramafic complex directly stemmed from asthenospheric mantle and Halajun A1-type granites represent two manners of vertical crustal growth.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.10.1016/S0009-2541(02)00195-XGoogle Scholar
Bédard, J. H. 2006. A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188–214.10.1016/j.gca.2005.11.008Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.10.1016/S0012-821X(97)00040-XGoogle Scholar
Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M. & Schmitt, A. K. 2013 Zircon saturation re-visited. Chemical Geology 351, 324–34.10.1016/j.chemgeo.2013.05.028Google Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78 (1/2), 124.10.1016/j.lithos.2004.04.042Google Scholar
Cao, J., Wang, C. Y., Xing, C. M. & Xu, Y. G. 2014. Origin of the early Permian Wajilitag igneous complex and associated Fe–Ti oxide mineralization in the Tarim large igneous province, NW China. Journal of Asian Earth Sciences 84, 5168.10.1016/j.jseaes.2013.09.014Google Scholar
Cao, X. F., , X. B., Liu, S. T., Zhang, P., Gao, X., Chen, C. & Mo, Y. L. 2011. LA-ICP-MS zircon dating, geochemistry, petrogenesis and tectonic implications of the Dapingliang Neoproterozoic granites at Kuluketage block, NW China. Precambrian Research 186, 205–19.10.1016/j.precamres.2011.01.017Google Scholar
Charlier, B., Namur, O., Toplis, M. J., Schiano, P., Cluzel, N., Higgins, M. D. & Auwera, J. V. 2011. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 39, 907–10.10.1130/G32091.1Google Scholar
Chen, B. & Arakawa, Y. 2005. Elemental and Nd–Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta 69 (5), 1307–20.10.1016/j.gca.2004.09.019Google Scholar
Chen, M. M., Tian, W., Zhang, Z. L., Pan, W. Q. & Song, Y. 2010. Geochronology of the Permian basic–intermediate–acidic magma suite from Tarim, Northwest China and its geological implications. Acta Petrologica Sinica 26, 559–72 (in Chinese with English summary).Google Scholar
Cheng, Z. G., Zhang, Z. C., Hou, T., Santosh, M., Zhang, D. Y. & Ke, S. 2015. Petrogenesis of nephelinites from the Tarim large igneous province, NW China: implications for mantle source characteristics and plume–lithosphere interaction. Lithos 220–223, 164–78.10.1016/j.lithos.2015.02.002Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.10.1007/BF00374895Google Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisited: assessment of a residual-source modal. Geology 19, 163–6.10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;22.3.CO;2>Google Scholar
Eby, G. N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–34.10.1016/0024-4937(90)90043-ZGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;22.3.CO;2>Google Scholar
Frey, F. A., Coffin, M. F., Wallace, P. J. & Weis, D. 2003. Leg 183 synthesis: Kerguelen Plateau–Broken Ridge – a large igneous province. In Proceedings of the ODP (eds Frey, F. A., Coffin, M. F., Wallace, P. J. & Quilty, P. G.), pp. 1–48. Scientific Results vol. 183.Google Scholar
Frisby, C., Bizimis, M. & Mallick, S. 2016. Hf–Nd isotope decoupling in bulk abyssal peridotites due to serpentinization. Chemical Geology 440, 6072.10.1016/j.chemgeo.2016.07.006Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.10.1093/petrology/42.11.2033Google Scholar
Ge, R. F., Zhu, W. B., Wilde, S. A., Wu, H. L., He, J. W. & Zheng, B. H. 2014. Archean magmatism and crustal evolution in the northern Tarim Craton: insights from zircon U–Pb–Hf–O isotopes and geochemistry of ~2.7 Ga orthogneiss and amphibolite in the Korla Complex. Precambrian Research 252, 145–65.10.1016/j.precamres.2014.07.019Google Scholar
Geng, H. Y., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. & Wu, F. Y. 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chemical Geology 266, 364–89.10.1016/j.chemgeo.2009.07.001Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.10.1016/j.precamres.2003.12.011Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., O'Reilly, S. Y., Van Achterberg, E. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.10.1016/S0016-7037(99)00343-9Google Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. S. & Zhou, X. M. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.10.1016/S0024-4937(02)00082-8Google Scholar
Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. 2012. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology 53, 875–90.10.1093/petrology/egr080Google Scholar
Han, B. F., He, G. Q., Wang, X. C. & Guo, Z. J. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews 109, 7493.10.1016/j.earscirev.2011.09.001Google Scholar
Han, B. F., Wang, S. G., Jahn, B. M., Hong, D. W., Kagami, H. & Sun, Y. L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology 138, 135–59.10.1016/S0009-2541(97)00003-XGoogle Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.10.1016/S0040-1951(00)00176-1Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L. & Yang, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.10.1039/c2ja30078hGoogle Scholar
Huang, H., Zhang, Z., Kusky, T., Santosh, M., Zhang, S., Zhang, D., Liu, J. & Zhao, Z. 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: insight from the Permian Halajun A1-type granitic magmatism. Lithos 155, 4966.10.1016/j.lithos.2012.08.014Google Scholar
Jakobsen, J. K., Veksler, I. V., Tegner, C. & Brooks, C. K. 2005. Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33, 885–8.10.1130/G21724.1Google Scholar
Jiang, N. & Guo, J. H. 2010. Huonuoba intermediate-mafic granulite xenoliths revisited: assessment of a Mesozoic underplating model. Earth and Planetary Science Letters 293, 277–88.10.1016/j.epsl.2010.02.042Google Scholar
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W. & Trofimov, V. R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 7591.10.1016/S0012-821X(03)00347-9Google Scholar
Kerr, A. & Fryer, B. J. 1993. Nd isotope evidence for crust–mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology 104, 3960.10.1016/0009-2541(93)90141-5Google Scholar
Li, Y., Kong, P., Qian, Y. X., Zhang, K. Y., Zhang, M. L., Chen, Y., Cai, X. Y. & You, D. H. 2007. Zircon U–Pb ages of the Early Permian magmatic rocks in the Tazhong–Bachu region, Tarim basin by LA-ICPMS. Acta Petrologica Sinica 23, 1097–107 (in Chinese with English summary).Google Scholar
Li, Y. Q., Li, Z. L., Chen, H. L., Yang, S. F. & Yu, X. 2012 a. Mineral characteristics and metallogenesis of the Wajilitag layered mafic–ultramafic intrusion and associated Fe–Ti–V oxide deposit in the Tarim large igneous province, northwest China. Journal of Asian Earth Sciences 49, 161–74.10.1016/j.jseaes.2011.11.026Google Scholar
Li, Y. Q., Li, Z. L., Sun, Y. L., Santosh, M., Langmuir, C. H., Chen, H. L., Yang, S. F., Chen, Z. X. & Yu, X. 2012 b. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China: implications for the evolution of the Tarim Large Igneous Province. Chemical Geology 328, 278–89.10.1016/j.chemgeo.2012.03.007Google Scholar
Li, Y. Q., Li, Z. L., Yu, X., Langmuir, C. H., Santosh, M., Yang, S. F., Chen, H. L., Tang, Z. L., Song, B. & Zou, S. Y. 2014. Origin of the early Permian zircons in Keping basalts and magma evolution of the Tarim large igneous province (northwestern China). Lithos 204, 4758.10.1016/j.lithos.2014.05.021Google Scholar
Li, Z. L., Chen, H. L., Song, B., Li, Y. Q., Yang, S. F. & Yu, X. 2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences 42, 917–27.10.1016/j.jseaes.2011.05.009Google Scholar
Li, Z. L., Li, Y. Q., Chen, H. L., Santosh, M., Yang, S. F., Xu, Y. G., Langmuir, C. H., Chen, Z. X., Yu, X. & Zou, S. Y. 2012 c. Hf isotopic characteristics of the Tarim Permian large igneous province rocks of NW China: implication for the magmatic source and evolution. Journal of Asian Earth Sciences 49, 191202.10.1016/j.jseaes.2011.11.021Google Scholar
Li, Z. L., Yang, S. F., Chen, H. L., Langmuir, C. H., Yu, X., Lin, X. B. & Li, Y. Q. 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: evidence from Permian plume magmatism. Acta Petrologica Sinica 24, 959–70 (in Chinese with English summary).Google Scholar
Liu, H. Q., Xu, Y. G., Tian, W., Zhong, Y. T., Mundil, R., Li, X. H., Yang, Y. H., Luo, Z. Y. & Shangguan, S. M. 2014. Origin of two types of rhyolites in the Tarim Large Igneous Province: consequences of incubation and melting of a mantle plume. Lithos 204, 5972.Google Scholar
Liu, P. P., Zhou, M. F., Ren, Z. Y., Wang, C. Y. & Wang, K. 2016. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): implications for the origin of bi-modal igneous suites in large igneous provinces. Journal of Asian Earth Sciences 127, 211–30.Google Scholar
Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K. & Wang, D. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008 a. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. S., Zong, K. Q., Kelemen, P. B. & Gao, S. 2008 b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology 247, 133–53.Google Scholar
Long, X. P., Yuan, C., Sun, M., Zhao, G. C., Xiao, W. J., Wang, Y. J., Yang, Y. H. & Hu, A. Q. 2011. Archean crustal evolution of the northern Tarim craton, NW China: zircon U–Pb and Hf isotopic constraints. Precambrian Research 180, 272–84.Google Scholar
Ludwig, K. R. 2003. ISOPLOT 3.00: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 73 pp.Google Scholar
Pearce, J. A. 1996. Sources and settings of granitic rocks. Episodes 19, 120–5.Google Scholar
Philpotts, A. R. 1982. Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology 80, 201–18.Google Scholar
Pin, C. & Paquette, J. L. 1997. A mantle-derived bimodal suite in the Hercynian belt: Nd isotope and trace element evidence for a subduction-related rift origin of the late Devonian Brevenne metavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology 129, 222–38.Google Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology 36, 891931.Google Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the Lutetium–Hafnium clock. Science 293, 683–7.Google Scholar
Shellnutt, J. G., Bhat, G. M., Wang, K. L., Brookfield, M. E., Dostal, J. & Jahn, B. M. 2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: geochemical evidence for shallow melting of the mantle. Lithos 204, 159–71.Google Scholar
Shellnutt, J. G., Bhat, G. M., Wang, K.-L., Yeh, M.-W., Brookfield, M. E. & Jahn, B.-M. 2015. Multiple mantle sources of the Early Permian Panjal Traps, Kashmir, India. American Journal of Science 315, 589619.Google Scholar
Shellnutt, J. G. & Jahn, B. M. 2010. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: implications for the genesis of Fe–Ti oxide deposits and A-type granites of SW China. Earth and Planetary Science Letters 289, 509–19.Google Scholar
Shellnutt, J. G., Jahn, B.-M. & Dostal, J. 2010. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos 119, 3446.Google Scholar
Shellnutt, J. G., Wang, K.-L., Zellmer, G. F., Iizuka, Y., Jahn, B.-M., Pang, K.-N., Qi, L. & Zhou, M.-F. 2011. Three Fe-Ti oxide ore-bearing gabbro-granitoid complexes in the Panxi region of the Emeishan large igneous province, SW China. American Journal of Science 311, 773812.Google Scholar
Shellnutt, J. G. & Zhou, M.-F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chemical Geology 243, 286316.Google Scholar
Shellnutt, J. G., Zhou, M.-F. & Zellmer, G. F. 2009. The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chemical Geology 259, 204–17.Google Scholar
Su, Y. P., Zheng, J. P., Griffin, G. L., Zhao, J. H., O′Reilly, S. Y., Tang, H. Y., Ping, X. Q. & Xiong, Q. 2013. Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: constraints on the eastern subsurface boundary between the North and South China blocks. Lithos 175–176, 333–50.Google Scholar
Su, Y. P., Zheng, J. P., Griffin, W. L., Zhao, J. H., Tang, H. Y., Ma, Q. & Lin, X. Y. 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: implication for a tectonic transition. Gondwana Research 22, 1009–29.Google Scholar
Sun, H. W., Li, Y. Q., Li, Z. L., Zou, S. Y., Langmuir, C. H., Chen, H. L., Yang, S. F. & Ren, Z. Y. 2016. Estimating the parental magma composition and temperature of the Xiaohaizi cumulate-bearing ultramafic rock: implication for magma evolution of the Tarim Large Igneous Province, Northwestern China. Journal of Earth Science 27, 519–28.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tian, W., Campbell, I. H., Allen, C. M., Guan, P., Pan, W. Q., Chen, M. M., Yu, H. J. & Zhu, W. P. 2010. The Tarim picrite–basalt–rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology 160, 407–25.Google Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28, 151–79.Google Scholar
Van Tongeren, J. A. & Mathez, E. A. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology 40, 491–4.Google Scholar
Wang, K., Xing, C. M., Ren, Z. Y. & Wang, C. Y. 2013. Liquid immiscibility in the Panzhihua mafic layered intrusion: evidence from melt inclusions in apatite. Acta Petrologica Sinica 29, 3503–18 (in Chinese with English summary).Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.Google Scholar
Wei, X. & Xu, Y. G. 2011. Petrogenesis of Xiaohaizi syenite complex from Bachu area, Tarim. Acta Petrologica Sinica 27, 29843004 (in Chinese with English summary).Google Scholar
Wei, X. & Xu, Y. G. 2013. Petrogenesis of the mafic dykes from Bachu and implications for the magma evolution of the Tarim large igneous province, NW China. Acta Petrologica Sinica 29, 3323–35 (in Chinese with English summary).Google Scholar
Wei, X., Xu, Y. G., Feng, Y. X. & Zhao, J. X. 2014 a. Plume–lithosphere interaction in the generation of the Tarim large igneous province, NW China: geochronological and geochemical constraints. American Journal of Science 314, 314–56.Google Scholar
Wei, X., Xu, Y. G., Luo, Z. Y., Zhao, J. X. & Feng, Y. X. 2015. Composition of the Tarim mantle plume: constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China. Lithos 230, 6981.Google Scholar
Wei, X., Xu, Y. G., Zhang, C. L., Zhao, J. X. & Feng, Y. X. 2014 b. Petrology and Sr–Nd isotopic disequilibrium of the Xiaohaizi intrusion, NW China: genesis of layered intrusions in the Tarim large igneous province. Journal of Petrology 55, 2567–98.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.Google Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–59.Google Scholar
Xu, Y. G., Luo, Z. Y., Huang, X. L., He, B., Xiao, L., Xie, L. W. & Shi, Y. R. 2008. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta 72, 3084–104.Google Scholar
Xu, Y. G., Wei, X., Luo, Z. Y., Liu, H. Q. & Cao, J. 2014. The Early Permian Tarim Large Igneous Province: main characteristics and a plume incubation model. Lithos 204, 2035.Google Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A., Xie, L. W., Yang, Y. H. & Liu, X. M. 2007 a. Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.Google Scholar
Yang, S. F., Chen, H. L., Li, Z. L., Li, Y. Q., Yu, X., Li, D. X. & Meng, L. F. 2013. Early Permian Tarim large igneous province in northwest China. Science China: Earth Sciences 56, 2015–26.Google Scholar
Yang, S. F., Li, Z. L., Chen, H. L., Santosh, M., Dong, C. W. & Yu, X. 2007 b. Permian bimodal dyke of Tarim Basin, NW China: geochemical characteristics and tectonic implications. Gondwana Research 12, 113–20.Google Scholar
Yang, S. F., Li, Z. L., Chen, H. L., Xiao, W. J., Yu, X., Lin, X. B. & Shi, X. G. 2006. Discovery of a Permian quartz syenitic porphyritic dyke from the Tarim basin and its tectonic implications. Acta Petrologica Sinica 22, 1405–12 (in Chinese with English summary).Google Scholar
Yu, J. C., Mo, X. X., Dong, G. C., Yu, X. H., Xing, F. C., Li, Y. & Huang, X. K. 2011 a. Felsic volcanic rocks from northern Tarim, NW China: zircon U–Pb dating and geochemical characteristics. Acta Petrologica Sinica 27, 2184–94 (in Chinese with English summary).Google Scholar
Yu, X., Yang, S. F., Chen, H. L., Chen, Z. Q., Li, Z. L., Batt, G. E. & Li, Y. Q. 2011 b. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U–Pb dating and geochemical characteristics. Gondwana Research 20, 485–97.Google Scholar
Yu, Y., Sun, M., Long, X. P., Li, P. F., Zhao, G. C., Kröner, A., Broussolle, A. & Yang, J. H. 2017. Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of the lower crust and tectonic setting. Gondwana Research 47, 131–41.Google Scholar
Yuan, C., Sun, M., Wilde, S., Xiao, W. J., Xu, Y. G., Long, X. P. & Zhao, G. C. 2010. Postcollisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off. Lithos 119, 269–88.Google Scholar
Zhang, C. L., Li, Z. X., Li, X. H., Xu, Y. G., Zhou, G. & Ye, H. M. 2010 a. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: results of a ca. 275 Ma mantle plume? Geological Society of American Bulletin 122, 2020–40.Google Scholar
Zhang, C. L., Li, X. H., Li, Z. X., Ye, H. M. & Li, C. N. 2008 a. A Permian layered intrusive complex in the western Tarim Block, northwestern China: product of a ca. 275 Ma mantle plume? Journal of Geology 116, 269–87.Google Scholar
Zhang, C. L., Xu, Y. G., Li, Z. X., Wang, H. Y. & Ye, H. M. 2010 b. Diverse Permian magmatism in the Tarim Block, NW China: genetically linked to the Permian Tarim mantle plume? Lithos 119, 537–52.Google Scholar
Zhang, C. L. & Zou, H. B. 2013. Permian A-type granites in Tarim and western part of Central Asian Orogenic Belt (CAOB): genetically related to a common Permian mantle plume? Lithos 172, 4760.Google Scholar
Zhang, D. Y., Zhang, Z. C., Huang, H., Encarnación, J., Zhou, N. W. & Ding, X. X. 2014. Platinum-group elemental and Re–Os isotopic geochemistry of the Wajilitag and Puchang Fe–Ti–V oxide deposits, northwestern Tarim Large Igneous Province. Ore Geology Reviews 57, 589601.Google Scholar
Zhang, D. Y., Zhang, Z. C., Santosh, M., Cheng, Z., He, H. & Kang, J. 2013. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters 361, 238–48.Google Scholar
Zhang, D. Y., Zhou, T. F., Yuan, F., Fan, Y., Liu, S. & Du, H. X. 2010 c. LA-ICPMS U–Pb ages, Hf isotope characteristics of zircons from basalts in the Kupukuziman Formation, Keping area, Tarim Basin. Acta Petrologica Sinica 26, 963–74 (in Chinese with English summary).Google Scholar
Zhang, D. Y., Zhou, T. F., Yuan, F., Jowitt, S. M., Fan, Y. & Liu, S. 2012. Source, evolution and emplacement of Permian Tarim Basalts: evidence from U–Pb dating, Sr–Nd–Pb–Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China. Journal of Asian Earth Sciences 49, 175–90.Google Scholar
Zhang, X. H., Zhang, H. F., Tang, Y. J., Wilde, S. A. & Hu, Z. C. 2008 b. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology 249, 262–81.Google Scholar
Zhang, Y., Liu, J. & Guo, Z. 2010. Permian basaltic rocks in the Tarim basin, NW China: implications for plume–lithosphere interaction. Gondwana Research 18, 596610.Google Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Liou, J. G. & Pearson, N. 2006. Granulite xenoliths and their zircons, Tuoyun, NW China: insights into southwestern Tianshan lower crust. Precambrian Research 145, 159–81.Google Scholar
Zhong, H., Zhu, W. G., Chu, Z. Y., He, D. F. & Song, X. Y. 2007. Shrimp U–Pb zircon geochronology, geochemistry, and Nd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology 236, 112–33.Google Scholar
Zhong, Y. F., Ma, C. Q., Zhang, C., Wang, S. M., She, Z. B., Liu, L. & Xu, H. J. 2013. Zircon U–Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite pluton and Taoyuan mafic–felsic Complex at the southeastern margin of the Yangtze Block. Journal of Asian Earth Sciences 74, 1124.Google Scholar
Zhou, M.-F., Chen, W. T., Wang, C. Y., Prevec, S. A., Liu, P. P. & Howarth, G. H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers 4, 481502.Google Scholar
Zhou, M.-F., Robinson, P. T., Lesher, C. M., Keays, R. R., Zhang, C. J. & Malpas, J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan province, SW China. Journal of Petrology 46, 2253–80.Google Scholar
Zhou, M. F., Zhao, J. H., Jiang, C. Y., Gao, J. F., Wang, W. & Yang, S. H. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: implications for a possible Permian large igneous province. Lithos 113, 583– 94.Google Scholar
Zou, S. Y., Li, Z. L., Song, B., Ernst, R. E., Li, Y. Q., Ren, Z. Y., Yang, S. F., Chen, H. L., Xu, Y. G. & Song, X. Y. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: implications for magmatic evolution of the Tarim large igneous province. Lithos 212–215, 428– 42.Google Scholar
Supplementary material: File

Su et al supplementary material

Table S1

Download Su et al supplementary material(File)
File 153.1 KB