Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T19:32:26.318Z Has data issue: false hasContentIssue false

Middle Pennsylvanian vegetation of the San Giorgio Basin, southern Sardinia (Italy)

Published online by Cambridge University Press:  03 October 2016

Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff CF10 3NP, UK
AMAP c/o CIRAD, Boulevard de la Lironde, 34398 Montpellier Cedex 5, France Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Via Trentino 51, Cagliari, Italy
Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Via Trentino 51, Cagliari, Italy
Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Via Trentino 51, Cagliari, Italy
Naturmuseum Südtirol, Bindergasse 1, 39100 Bozen, Italy Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität München and Bayerische Staatssammlung für Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 München, Germany
Author for correspondence:


The small, intramontane San Giorgio Basin in southwestern Sardinia has yielded plant macrofossils dominated by sphenophytes, but with subsidiary pteridosperms, ferns, (?)noeggerathians and cordaitanthaleans. They belong to the upper part of the Crenulopteris acadica Zone or possibly the Odontopteris cantabrica Zone, indicating a late Asturian or Cantabrian (≡ late Moscovian) age. They therefore correlate with the post-Leonian deposits in northern Spain, the Nýřany Member in Western and Central Bohemia, and the Llantwit Beds in South Wales. The presence of post-tectonic deposits of this age is further evidence of the widespread influence of the Leonian Phase of tectonic activity in middle Asturian times, whose effect can be observed across Europe. The San Giorgio Basin is therefore a late Variscan rather than post-Variscan basin.

Original Articles
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abbott, M. L. 1958. The American species of Asterophyllites, Annularia, and Sphenophyllum . Bulletin of American Paleontology 38, 289390.Google Scholar
van Amerom, H. W. J.. 1975. Die eusphenopteridischen Pteridophyllen aus der Sammlung des Geologischen Bureaus in Heerlen, unter besonderer Berücksichtigung ihrer Stratigraphie bezüglich des südlimburger Kohlenreviers. Mededelingen Rijks Geologische Dienst, Serie C-III-1 7, 1202.Google Scholar
Balme, B. E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87, 81323.Google Scholar
Barca, S., Carannante, G., Cassinis, G., Cherchi, A., Corrandini, C., Cortesogno, L., Del Rio, M., Durand, M., Ferretti, A., Fontana, D., Funedda, A., Gaggero, L., Garau, A. M., Leone, M., Macciotta, G., Marchi, M., Matteucci, R., Murru, M., Neri, C., Loi, A., Pillola, G. L., Pittau, P., Ronchi, A., Salvadori, I., Sarria, E., Schroeder, R., Serpagli, E., Simone, L. & Stefani, C. 2004. Sardinian Palaeozoic Basement and its Meso – Cainozoic Covers (Italy). 32nd International Geological Congress, Field Guide Book, P39, 64 pp.Google Scholar
Barca, S. & Costamagna, L. G. 2003. The Upper Carboniferous S. Giorgio succession (Iglesiente, SW Sardinia): stratigraphy, depositional setting and evolution of a late to post-Variscan molassic basin. Bolletino della Società Geologica Italiana, Special Volume 2, 8998.Google Scholar
Barthel, M. 2000. Annularia stellata oder Annularia spinulosa? Veröffentlichungen Naturkundemuseum Erfurt 19, 3742.Google Scholar
Barthel, M. 2012. Annularia spicata (Gutbier) Schimper – Calamitenzweige des Rotliegend. Veröffentlichungen Museum für Naturkunde Chemnitz 35, 1728.Google Scholar
Bashforth, A. R., Drábková, J., Opluštil, S., Gibling, M. R. & Falcon-Lang, H. J. 2011. Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýřany Member, Central and Western Bohemian Basin, Czech Republic). Review of Palaeobotany and Palynology 163, 153–89.Google Scholar
Bek, J. & Opluštil, S. 1998. Some lycopsid, sphenopsid and pteropsid fructifications and their miospores from the Upper Carboniferous basins of the Bohemian Massif. Palaeontographica, Abteilung B 248, 127–61.Google Scholar
Brongniart, A. 1828a. Histoire des Végétaux Fossiles, 1(1–2). Paris: G. Dufour & E. d'Ocagne, pp. 1136, pls 1–27.Google Scholar
Brongniart, A. 1828b. Prodrome d'une Histoire des Végétaux Fossiles. Paris & Strasbourg: F.G. Levrault, 223 pp.Google Scholar
Brousmiche, C. 1983. Les fougères Sphénoptéridiennes du bassin houiller Sarro-Lorrain. Publication Société Géologique du Nord 10, 1480.Google Scholar
Cassinis, G., Perotti, C. & Ronchi, A. 2013. Geological remarks on the Carboniferous–Permian continental successions of southwestern Europe. In The Carboniferous–Permian Transition (eds Lucas, S. G., Krainer, K. & Schneider, J. W.), pp. 5763. New Mexico Museum of Natural History, Albuquerque (Bulletin, 60).Google Scholar
Cassinis, G. & Ronchi, A. 1997. Upper Carboniferous to Lower Permian continental deposits in Sardinia (Italy). Geodiversitas 19, 217–20.Google Scholar
Cassinis, G. & Ronchi, A. 2002. The (late-) post-Variscan continental succession of Sardinia. Rendiconti della Società Paleontologica Italiana 1, 7792.Google Scholar
Cleal, C. J. (ed.) 1991. Plant Fossils in Geological Investigation: The Palaeozoic. Chichester: Ellis Horwood, 233 pp.Google Scholar
Cleal, C. J. 1997. The palaeobotany of the upper Westphalian and Stephanian of southern Britain and its geological significance. Review of Palaeobotany and Palynology 95, 227–53.Google Scholar
Cleal, C. J., Opluštil, S., Thomas, B. A. & Tenchov, Y. 2010. Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Netherlands Journal of Geosciences 88, 181278.Google Scholar
Cleal, C. J. & Shute, C. H. 1995. A synopsis of neuropteroid foliage from the Carboniferous and Lower Permian of Europe. Bulletin of the British Museum (Natural History), Geology Series 51, 152.Google Scholar
Cleal, C. J. & Shute, C. H. 2016. A new late Carboniferous calamitacean sphenophyte from South Wales, United Kingdom. Spanish Journal of Palaeontology 31, 2540.Google Scholar
Cleal, C. J., Shute, C. H. & Zodrow, E. L. 1990. A revised taxonomy for Palaeozoic neuropterid foliage. Taxon 39, 486–92.Google Scholar
Cleal, C. J., Tenchov, Y. G., Dimitrova, T. Kh., Thomas, B. A. & Zodrow, E. L. 2007. Late Westphalian–Early Stephanian vegetational changes across the Variscan Foreland. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10–16 August 2003 (ed. Wong, Th. E.), pp. 367–77. Amsterdam: Royal Netherlands Academy of Arts and Sciences.Google Scholar
Cleal, C. J. & Thomas, B. A. 1994. Plant Fossils of the British Coal Measures. London: Palaeontological Association, 222 pp.Google Scholar
Cleal, C. J. & van Waveren, I. M. 2012. A reappraisal of the Carboniferous macrofloras of the Zonguldak Amasra Coal Basin, north-western Turkey. Geologia Croatica 65, 283–97.Google Scholar
Cocozza, T. 1967. Il Permo-Carbonifero del bacino di San Giorgio (Iglesiente, Sardegna sud-occidentale). Memorie della Società Geologica Italiana 6, 607–42.Google Scholar
Costamagna, L. G. & Barca, S. 2008. Depositional architecture and sedimentology of the Tuppa Niedda conglomerates (Late Carboniferous, Arburese, SW Sardinia, Italy). Bolletino della Società Geologica Italiana 128, 625–36.Google Scholar
Costamagna, L. G., Cruciani, G. & Franceschelli, M. 2012. Late Carboniferous to Permian volcano-sedimentary successions in SW Sardinia: a sedimentological, mineralogical and petrographical review. Rendiconti Società Geologica Italiana 21, 1038–40.Google Scholar
Crookall, R. 1969. Fossil plants of the Carboniferous rocks of Great Britain [Second Section]. Part 5. Memoirs of the Geological Survey of Great Britain, Palaeontology 4, 573792.Google Scholar
Danzé, J. 1956. Contribution à l'étude des Sphenopteris. Les fougères Sphénoptéridiennes du bassin houiller du Nord de la France. Études Géologiques pour l'Atlas Topographie Souterraine 1 (2), 1568.Google Scholar
Davies, D. 1929. Correlation and palæontology of the Coal Measures in east Glamorganshire. Philosophical Transactions of the Royal Society of London, Series B 217, 91153.Google Scholar
Del Rio, M. 1973. Palinologia di un livello “permo-carbonifero” do San Giorgio (Iglesiente, Sardegna sud-occidentale). Bolletino della Società Geologica Italiana 93, 113–24.Google Scholar
Del Rio, M., Pillola, G. L. & Muntoni, F. 2002. The Upper Carboniferous of the San Giorgio basin. Rendiconti della Società Paleontologica Italiana 1, 223–29.Google Scholar
Del Rio, M. & Pittau, P. 1999. The Upper Carboniferous of the San Giorgio Basin. In Late Palaeozoic Continental Basins of Sardinia. Field Trip Guidebook 15–18 September 1999 (eds Cassinis, G., Cortesogno, L., Gaggero, L., Pittau, P., Ronchi, A. & Sarria, E.), pp. 37–9. Pavia: Earth Science Department, University of Pavia.Google Scholar
Doubinger, J. 1956. Contribution à l’étude des flores Autuno-Stéphaniennes. Mémoires de la Société géologique de France, N. S. 75, 1180.Google Scholar
Dvořak, J., Mirouse, R., Paproth, E., Pelhate, A., Ramsbottom, W. H. C. & Wagner, R. H. 1977. Relations entre la sedimentation Eodévonien-Carbonifère et la tectonique Varisque en Europe centrale et occidentale. Colloque International du Centre National de la Recherche Scientifique, Rennes 243, 241–73.Google Scholar
Feistmantel, K. 1879. Eine neue Pflanzengattung aus Böhmischen Steinkohlenschichten. Sitzungsberichte der König Böhmischen Gesellschaft der Wissenschaften in Prag 3, 298303.Google Scholar
Fondi, R. 1979. Orme di microsauri nei Carbonifero superiore della Sardegna. Memorie della Società Geologica Italiana 20, 347–56.Google Scholar
Galtier, J. & Béthoux, O. 2002. Morphology and growth habit of Dicksonites pluckenetii from the Upper Carboniferous of Graissessac (France). Geobios 35, 525–35.Google Scholar
Galtier, J., Scott, A. C., Powell, J. H., Glover, B. W. & Waters, C. N. 1992. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proceedings of the Royal Society of London, Series B 247, 211–4.Google Scholar
Gambera, V. 1897. Sulla Scoperta di Nuove Zone di Carbonifero e Sulla Stratigrafia dell'Iglesiente. Tip. Commerciale, Cagliari, 5 pp.Google Scholar
Gastaldo, R. A. 1992. Regenerative growth in fossil horsetails following burial by alluvium. Historical Biology 6, 203–19.Google Scholar
Gastaldo, R. A. & Matten, L. C. 1978. Trigonocarpus leanus, a new species from the Middle Pennsylvanian of southern Illinois. American Journal of Botany 65, 882–90.Google Scholar
Grand'Eury, F. C. 1877. La flore Carbonifère du Département de la Loire et du Centre de la France: étudiée aux trois points de vue, botanique, stratigraphique et géognostique. Mémoires de L'Académie des Sciences Naturelles, Paris 24, 1624.Google Scholar
Gutbier, A. V. 1835. Abdrücke und Versteinerungen des Zwickauer Schwarzkohlengebirges. Zwickau: G. Richter, 80 pp., 11 pls.Google Scholar
Gutbier, A. V. 1837. Über die gegenseitige sehr gesonderte Lagerung und die gänzlich von einander abweichenden Pflanzenabdrücke des Rothliegenden und der Kohlen-Formation in der Gegend von Zwickau. Sitzungsberichte der Naturwissenschaftlichen Gesellschaft Isis zu Jena 1837, 435–36.Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4 (1), 9 pp.Google Scholar
Hoffmann, F. 1826. Untersuchungen über die Pflanzen-Rest des Kohlengebirges von Ibbenbühren und vom Piesberg bei Osnabrück. Karsten's Archiv für Bergbau und Hüttenwesen 13, 266–82.Google Scholar
Jongmans, W. J. 1955. Notes paléobotaniques sur les Bassins houillers de l'Anatolie. Mededelingen van de Geologische Stichting, Serie C 9, 5589.Google Scholar
Kędzior, A., Gradziński, R., Doktor, M. & Gmur, D. 2007. Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession – an example from the Upper Silesia Coal Basin. Geological Magazine 144, 487–96.Google Scholar
Kidston, R. 1891. Notes on the Palæozoic species mentioned in Lindley and Hutton's “Fossil Flora.” Proceedings of the Royal Physical Society of Edinburgh 10, 345–91.Google Scholar
Kidston, R. 1924. Fossil plants of the Carboniferous rocks of Great Britain. Part 5. Memoirs of the Geological Survey of Great Britain, Palaeontology 2, 377522.Google Scholar
Laveine, J.-P. 1989. Guide Palèobotanique dans le Terrain Houiller Sarro-Lorrain. Merlebach: Houilleres du Bassin de Lorraine, 154 pp.Google Scholar
Lesquereux, L. 1880. The Coal Flora of Pennsylvania, and the Carboniferous Formation throughout the United States, 1–2. Second Geological Survey of Pennsylvania, Report of Progress. Harrisburg PA: Board of Commissioners for the Second Geological Survey, 694 pp.Google Scholar
Libertin, M., Bek, J. & Dràbkovà, J. 2014. New sphenophyllaleans from the Pennsylvanian of the Czech Republic. Review of Palaeobotany and Palynology 200, 196210.Google Scholar
Lindley, J. & Hutton, W. 1832. The Fossil Flora of Great Britain. Volume 1, Part 2. London: W. J. Ridgeway and Sons, pp. 49166, pls 15–49.Google Scholar
Lindley, J. & Hutton, W. 1834. The Fossil Flora of Great Britain, Volume 2, Part 2. London: W. J. Ridgeway and Sons, pp. 57156, pls 100–37.Google Scholar
Lindley, J. & Hutton, W. 1837. The Fossil Flora of Great Britain. Volume 3, Part 3. London: W. J. Ridgeway and Sons, pp 123208, pls 195–230.Google Scholar
Lyons, P. C. & Darrah, W. C. 1989. Earliest conifers of North America: upland and/or paleoclimatic indicators? Palaios 4, 480–6.Google Scholar
Magurran, A. 1988. Ecological Diversity and its Measurement. Princeton: Princeton University Press, 192 pp.Google Scholar
McNeill, J., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J. & Prud'homme Van Reine, W. F. 2012. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code). Oberreifenberg: Koeltz Scientific Books (Regnum Veg, 154), 240 pp.Google Scholar
Merlo, G. 1911. Dell'esistenza di un lembo carbonifero fra Monteponi e Iglesias. Resoconti delle Riunioni della Associazione Mineraria Sarda 16, 25–7.Google Scholar
Němejc, F. 1937. The sphenopterides stated in the Permocarboniferous of Central Bohemia (a preliminary report. II. part). Vestník Královské Èeské Spoleènosti Nauk 2, 114.Google Scholar
Novarese, V. 1917. L'Autuniano in Sardegna. Bollettino della Società Geologica Italiana 36, 5891.Google Scholar
Novarese, V. & Taricco, M. 1923. Cenni sommari sul Paleozoico dell'Iglesiente. Bollettino della Società Geologica Italiana 41, 316–25.Google Scholar
Opluštil, S. & Cleal, C. J. 2007. A comparative analysis of some Late Carboniferous basins of Variscan Europe. Geological Magazine 144, 417–48.Google Scholar
Opluštil, S. & Pešek, J. 1998. Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas 20, 597619.Google Scholar
Pillola, G. L., Petti, F. M., Sacchi, E., Piras, S., Zoboli, D. & Nicosia, U. 2004. Tetrapod footprints and associated biota: new evidences from the Upper Carboniferous of SW Sardinia (Italy). Geological Society of America, Abstracts with Programs 36 (4), 82.Google Scholar
Pittau, P. & Del Rio, M. 2002. Palynofloral biostratigraphy of the Permian and Triassic sequences of Sardinia. In Sardinia Field Trip – Palaeontology and Stratigraphy (eds Cherchi, A., Corradini, C. & Putzu, M. T.). Rendiconti della Società Paleontologica Italiana 1, 93109.Google Scholar
Pittau, P., Del Rio, M. & Funedda, A. 2008. Relationships between plant communities characterization and basin formation in the Carboniferous–Permian of Sardinia. Bolletino della Società Geologica Italiana 127, 637–53.Google Scholar
Potonié, H. 1899. Lehrbuch der Pflanzenpalaeontologie. Berlin: Dümmler, 402 pp.Google Scholar
Potonié, R. & Kremp, G. 1954. Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geologisches Jahrbuch 69, 111–94.Google Scholar
Potonié, R. & Kremp, G. 1955. Die Sporae dispersae des Ruhrkarbons, ihre Morphographie und Stratigraphie mit Ausblicken auf Arten andere Gebiete und Zeitabschnitte: Teil I. Palaeontographica, Abteilung B 98, 1136.Google Scholar
Pšenička, J., Bek, J., Zodrow, E. L., Cleal, C. J. & Hemsley, A. 2003. A new late Westphalian fossil marattialean fern from Nova Scotia. Botanical Journal of the Linnean Society 142, 199212.Google Scholar
Ronchi, A., Kustatscher, E., Pittau, P. & Santi, G. 2012. Pennsylvanian floras from Italy: an overview of the main sites and historical collections. Geologia Croatica 65, 299322.Google Scholar
Scanu, G. G., Corriga, M. G., Pillola, G. L. & Corradini, C. 2016. The mining area near Iglesias in soutwestern Sardinia (Pennsylvanian). In Planet Earth in Deep Time – Palaeozoic Series, Devonian & Carboniferous (eds Suttner, T. J., Kido, E., Königshof, P., Waters, J. A., Davis, I. & Messner, F.), pp. 124–5. Stuttgart: Schweizerbart Science.Google Scholar
Schopf, J. M., Wilson, R. L. & Bentall, R. 1944. An annotated synopsis of Paleozoic fossil spores and the definition of generic groups. Illinois Geological Survey, Reports of Investigations 91, 166.Google Scholar
Selden, P. A. & Pillola, G. L. 2009. A trigonocarpid arachnid from the Upper Carboniferous of the San Giorgio Basin, Sardinia. Rivista Italiana di Paleontologia e Stratigrafia 115, 269–74.Google Scholar
Simson-Scharold, E. 1934. Zur Kenntnis der Carbonflora des Saargebietes. Palaeontographica, Abteilung B 79, 166.Google Scholar
Šimůnek, Z. 2007. New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif, based on cuticle micromorphology. Sborník Národního Muzea v Praze, Serie B, Přírodní Vědy 62, 97210.Google Scholar
Smith, A. H. V. & Butterworth, M. A. 1967. Miospores in the coal seams of the Carboniferous of Great Britain. Special Papers in Palaeontology 1, 1324.Google Scholar
von Sternberg, K. M.. 1820. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt, 1(2). Leipzig: F. Fleischer, 24 pp., pls 1–13.Google Scholar
von Sternberg, K. M.. 1821. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt, 1(2). Leipzig: F. Fleischer, 33 pp., pls 14–26.Google Scholar
von Sternberg, K. M.. 1825. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt, 1(4), Tentamen. Regensburg: Brenck's Wittwe, 48 + xlii pp., pls 40–59, A–E.Google Scholar
von Sternberg, K. M., Presl, K. B. & Corda, A. C. J. 1838. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt, 2(7–8). Prague: G. Hässe & Söhne, pp. 81220, pls 27–68, A–B.Google Scholar
Sterzel, J. T. 1881. Paläontologischer Charakter der oberen Steinkohlenformation und des Rotliegenden im erzgebirgischen Becken. Bericht der Naturwissenschaftlichen Gesellschaft zu Chemnitz 7, 155270.Google Scholar
Surange, K. R. & Chandra, S. 1974. Some male fructification of Glossopteridales. The Palaeobotanist 21, 255–66.Google Scholar
Tenchov, Y. G. 2007. Late Westphalian and Stephanian sediments of the Dobrudzha Coalfield. Geological Magazine 144, 497511.Google Scholar
Testa, L. 1914. Il terreno carbonifero a sud di Monteponi. Resoconti delle Riunioni della Associazione Mineraria Sarda 19, 31–4.Google Scholar
Thomas, B. A. 2014. In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1820 in the Duckmantian at Brymbo, north Wales, UK. Palaeontology 57, 2136.Google Scholar
Wagner, R. H. 1959. Some Stephanian pecopterids from NW. Spain. Mededelingen van de Geologische Stichting, New Series 12, 523.Google Scholar
Wagner, R. H. 1963. Stephanian B flora from the Ciñera-Matallana Coalfield (León) and neighbouring outliers. I: Introduction, Neuropteris. Notas y Communicaciones del Instituto Geológico y Minero de España 72, 569.Google Scholar
Wagner, R. H. 1964. Stephanian floras in NW. Spain, with special reference to the Westphalian D – Stephanian A boundary. Compte rendu 5e Congrès International de Stratigraphie et de Géologie du Carbonifère (Paris, 1963) 1, 835–51.Google Scholar
Wagner, R. H. 1966. Palaeobotanical dating of Upper Carboniferous folding phases in NW. Spain. Memorias del Instituto Geologico y Minero de España 66, 1169.Google Scholar
Wagner, R. H. 1968. Upper Westphalian and Stephanian species of Alethopteris from Europe, Asia Minor and North America. Mededelingen van de Rijks Geologische Dienst, Serie C, III-1 6, 1388, pls 1–64.Google Scholar
Wagner, R. H. 1984. Megafloral zones of the Carboniferous. Compte rendu 9e Congrès International de Stratigraphie et de Géologie du Carbonifère (Washington, 1979) 2, 109–34.Google Scholar
Wagner, R. H. 1998. Consideraciones sobre los pisos de la Serie Estefaniense. Monografías Academia de Ciencias de Zaragoza 13, 919.Google Scholar
Wagner, R. H. & Álvarez-Vázquez, C. 2010a. A redescription of the Stephanian species Callipteridium virginianum (Fontaine & White, 1880) comb. nov. and Alethopteris leonensis Wagner, 1964. Scripta Geologica, Special Issue 7, 93139.Google Scholar
Wagner, R. H. & Álvarez-Vázquez, C. 2010 b. The Carboniferous floras of the Iberian Peninsula: a synthesis with geological connotations. Review of Palaeobotany and Palynology 162, 239324.Google Scholar
Wagner, R. H., Fernandez-Garcia, L. & Eagar, R. M. C. 1983. Geology and Palaeontology of the Guardo Coalfield (NE León – NW Palencia), Cantabrian Mts. Madrid: Instituto Geologico y Minero de España, 109 pp.Google Scholar
Weiss, C. E. 1869. Fossile Flora der jüngsten Steinkohlenformation und des Rothliegenden im Saar-Rhein-Gebiete. Band I. Bonn: A. Henry, 100 pp.Google Scholar
Weiss, C. E. 1876. Steinkohlen-Calamarien, I., mit besonderer Berucksichtigung ihrer Fructifikationen. Atlas zu den Abhandlungen der geologischen Spezialkarte von Preussen und den Thüringischen Staaten 2 (1), 1149, 19 pls.Google Scholar
Wittry, J., Glasspool, I. J., Béthoux, O., Koll, R. & Cleal, C. J. 2015. A revision of the Pennsylvanian marattialean fern Lobatopteris vestita auct. and related species. Journal of Systematic Palaeontology 13, 615–43.Google Scholar
Wood, H. C. 1869. Contributions to the Carboniferous flora of the United States. Proceedings of the Academy of Natural Sciences of Philadelphia 1869, 236–40.Google Scholar
Zeiller, R. 1883. Fructifications de fougères du terrain houiller. Annales des Sciences Naturelles, 6e Série, Botanique 16, 177209.Google Scholar
Zeiller, R. 1888. Études sur le terrain houiller de Commentry. Livre 2, Flore Fossile. St-Étienne: Théolier, 366 pp, 42 pls.Google Scholar
Zeiller, R. 1899. Étude sur la flore fossile du basin houiller d'Héraclée (Asie Mineure). Mémoires de la Société Géologique de France, Paléontologie 21, 191.Google Scholar
Zenker, F. C. 1833. Beschreibung von Galium sphenophylloides, Zenk. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1833, 398400.Google Scholar
Zhou, Y.-X. 1994. Earliest pollen-dominated microfloras from the early Late Carboniferous of the Tian Shan Mountains, NW China: their significance for the origins of conifers and palaeophytogeography. Review of Palaeobotany and Palynology 81, 193211.Google Scholar
Zodrow, E. L. & Cleal, C. J. 1998. Revision of the pteridosperm foliage Alethopteris and Lonchopteridium (Upper Carboniferous), Sydney Coalfield, Nova Scotia, Canada. Palaeontographica, Abteilung B 247, 65122.Google Scholar
Zodrow, E. L., Tenchov, Y. & Cleal, C. J. 2007. The arborescent Linopteris obliqua plant (Medullosales, Pennsylvanian). Bulletin of Geosciences 82, 5184.Google Scholar
Supplementary material: File

Cleal supplementary material

Cleal supplementary material 1

Download Cleal supplementary material(File)
File 175.9 KB