Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T12:14:23.173Z Has data issue: false hasContentIssue false

U–Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators

Published online by Cambridge University Press:  04 September 2020

Annamaria Fornelli*
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University, via E. Orabona, 4-70125Bari, Italy
Salvatore Gallicchio
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University, via E. Orabona, 4-70125Bari, Italy
Francesca Micheletti
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University, via E. Orabona, 4-70125Bari, Italy
Antonio Langone
Affiliation:
Institute of Geosciences and Earth Resources (CNR) – U.O.S. of Pavia, via Ferrata, 1-27100Pavia, Italy
*
Author for correspondence: Annamaria Fornelli, Email: annamaria.fornelli@uniba.it

Abstract

Twenty-one sandstone samples belonging to the intermediate part of Gorgoglione Flysch (GF) dated Middle-Miocene, cropping out in the Southern Apennines (Italy), have been studied to highlight the detritus provenance. Petrographic and chemical composition indicates that the successions consist of feldspatho-quartzose and litho-feldspatho-quartzose arenites interbedded with pelitic and calciclastic layers and reveals a provenance from a basement formed by low- to medium-grade metamorphic rocks with abundant granitoids covered by sedimentary rocks in which a volcanic component was also present. In the Mediterranean area, basements with these characteristics are widespread both in western and southwestern domains. The supply provenance of Gorgoglione Flysch has been better detailed utilizing U–Pb detrital zircon ages recording the geological history of the source rocks. Fifty-eight crystals from six samples of coarse- and fine-grained sandstones have been analysed using the U–Pb isotopic systematic (LA-ICP-MS). They produce 70 concordant zircon ages forming three defined clusters at 672 ± 28 Ma, 458 ± 9 Ma and 297 ± 8 Ma, and four zircon ages corresponding to 24 ± 1 Ma. An evaluation of the entire collected data suggests that the provenance area is better identified in northwestern sectors of the Mediterranean area in which the Sardinia–Corsica (pro-part) block plays a fundamental role.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alagna, KE, Peccerillo, A, Martin, S and Donati, C (2010) Tertiary to present evolution of orogenic magmatism in Italy. Journal of the Virtual Explorer 36, 163.CrossRefGoogle Scholar
Boenzi, F, Capolongo, D, Gallicchio, S and Di Pinto, G (2014) Morphostructure of the Lucania Apennines front between the Basento and Salandrella rivers (Southern Italy). Journal of Maps 10, 478–86.CrossRefGoogle Scholar
Boenzi, F and Ciaranfi, N (1970) Stratigrafia di dettaglio del Flysch di Gorgoglione (Lucania). Memorie della Società Geologica Italiana 9, 6579.Google Scholar
Boiano, U (1997) Anatomy of a siliciclastic turbidite basin: the Gorgoglione Flysch, Upper Miocene, southern Italy: physical stratigraphy, sedimentology and sequence stratigraphic framework. Sedimentary Geology 107, 231–62.CrossRefGoogle Scholar
Bussy, F, Péronnet, V, Ulianov, A, Epard, JL and Von Raumer, J (2011) Ordovician magmatism in the external French Alps: witness of a peri-Gondwanan active continental margin. In The Ordovician of the World (eds J C Gutiérrez-Marco, I Rábano and D Garcia-Bellido), pp. 7582. Madrid: Instituto Geológico y Minero de España, Cuadernos del Museo Geominero.Google Scholar
Campbell, IH, Reiners, PW, Allen, CM, Nicolescu, S and Upadhyay, R (2005) He–Pb double dating of detrital zircons from the Ganges and Indus rivers: implications for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters 237, 402–32.CrossRefGoogle Scholar
Carminati, E, Lustrino, M and Doglioni, C (2012) Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579, 173–92.CrossRefGoogle Scholar
Carbone, S (2013) Note illustrative della Carta Geologica d’Italia, alla scala 1:50000 Foglio 523 Rotondella. ISPRA, Società Geologica Italiana: http://www.isprambiente.gov.it/Media/carg/basilicata.html.Google Scholar
Casciano, CI, Patacci, M, Longhitano, SG, Tropeano, M, McCaffrey, W and Di Celma, C (2019) Multiscale analysis of a migrating submarine channel system in a tectonically-confined basin: the Miocene Gorgoglione Flysch formation, Southern Italy. Sedimentology 66, 205–40.Google Scholar
Casini, L, Cuccuru, S, Maino, M, Oggiano, G and Tiepolo, M (2012) Emplacement of the Arzachena Pluton (Corsica–Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 544, 3149.CrossRefGoogle Scholar
Cerone, D, Gallicchio, S, Moretti, M and Tinterri, R (2017) Vertical facies evolution of the Tufiti di Tusa Formation cropping out in the Lucanian Apennines (Southern Italy). Journal of Mediterranean Earth Sciences, Special Section of XIII Geosed Congress, 9, 109–12.Google Scholar
Colella, A (1979) Medium scale tractive bedforms and structures in Gorgoglione Flysch (lower Miocene, Southern Apennines, Italy). Bollettino della Società Geologica Italiana 98, 483–94.Google Scholar
Corfu, F, Hanchar, JM, Hoskin, PWO and Kinny, P (2003) Atlas of zircon textures. In Zircon (eds Hanchar, JM and Hoskin, PWO), pp. 469500. Reviews in Mineralogy and Geochemistry 53.CrossRefGoogle Scholar
Critelli, S (1999) The interplay of lithospheric flexure and thrust accommodation in forming stratigraphic sequences in the southern Apennines foreland basin system, Italy. Memorie dell’Accademia Nazionale dei Lincei 10, 257326.Google Scholar
Critelli, S (2018) Provenance of Mesozoic to Cenozoic circum-Mediterranean sandstones in relation to tectonic setting. Earth Science Reviews 185, 624–48.CrossRefGoogle Scholar
Critelli, S and Loiacono, F (1988) Provenienza e dispersione dei sedimenti nel flysch di Gorgoglione (Langhiano–Tortoniano, Appennino Lucano): implicazioni sull’evoluzione delle mode detritiche arenacee nell’orogene sud-appenninico. Memorie della Società Geologica Italiana 41, 809–26.Google Scholar
Critelli, S, Muto, F, Perri, F and Tripodi, V (2017) Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: stratigraphic record of the Miocene tectonic evolution. Marine and Petroleum Geology 87, 4759.CrossRefGoogle Scholar
De Capoa, P, Di Staso, A, Guerrera, F, Perrone, V and Tramontana, M (2004) The age of the oceanic accretionary wedge and onset of continental collision in the Sicilian Maghrebian Chain. Geodinamica Acta, 17, 331–48.CrossRefGoogle Scholar
Decelles, GB and Giles, KN (1996) Foreland basin systems. Basin Research 8, 105–23.CrossRefGoogle Scholar
Dickinson, WR (1985) Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (ed. Zuffa, G G), pp. 333–61. Dordrecht: Springer.CrossRefGoogle Scholar
Fiannacca, P, Williams, IS, Cirrincione, R and Pezzino, A (2013) The augen gneisses of the Peloritani Mountains (NE Sicily): granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Research 23, 782–96.CrossRefGoogle Scholar
Fornelli, A, Gallicchio, S and Micheletti, F (2019) U-Pb detrital zircon ages and compositional features of Bifurto quartz-rich sandstones from Southern Apennines (Southern Italy): comparison with Numidian Flysch sandstones to infer source area. Italian Journal of Geosciences 138, 216–30.CrossRefGoogle Scholar
Fornelli, A, Gallicchio, S, Mongelli, G, Salvemini, A, Summa, V, Ventrella, N and Zaza, S (1992) Areniti a glaucofane nell’Appennino meridionale. Mineralogica et Petropraphica Acta 35, 199214.Google Scholar
Fornelli, A, Langone, A, Micheletti, F and Piccarreta, G (2011) Time and duration of Variscan high-temperature metamorphic processes in the south European Variscides: constraints from U-Pb chronology and trace-element chemistry of zircon. Mineralogy and Petrology 103, 101–22.CrossRefGoogle Scholar
Fornelli, A, Micheletti, F, Langone, A and Perrone, V (2015) First U-Pb detrital zircon ages from Numidian sandstones in Southern Apennines (Italy): evidences of African provenance. Sedimentary Geology 320, 1929.CrossRefGoogle Scholar
Fornelli, A and Piccarreta, G (1997) Mineral and chemical provenance indicators in some early Miocene sandstones of the Southern Apennines (Italy). European Journal of Mineralogy 9, 433–47.Google Scholar
Fornelli, A, Piccarreta, G and Micheletti, F (2014) In situ U-Pb dating combined with SEM imaging on zircon – an analytical bond for effective geological reconstructions. In Geochronology– Methods and Case Studies (ed. Mörner, N A), pp. 109–39. Intech.Google Scholar
Franceschelli, M, Puxeddu, M and Cruciani, G (2005) Variscan metamorphism in Sardinia, Italy: review and discussion. Journal of the Virtual Explorer 19, 236.CrossRefGoogle Scholar
Gallicchio, S and Maiorano, P (1999) Revised stratigraphy of the Serra Palazzo formation, a Miocene foredeep turbidite succession of the Southern Apennines (Italy). Rivista Italiana di Paleontologia e Stratigrafia 105, 287302.Google Scholar
Garzanti, E (2019) Petrographic classification of sand and sandstone. Earth Science Reviews 193, 545–63.CrossRefGoogle Scholar
Gehrels, G (2014) Detrital zircon U–Pb geochronology: current methods and new opportunities. In Tectonics of Sedimentary Basins: Recent Advances (eds Busby, C and Azor, A), pp. 4562. Oxford: Blackwell Publishing Ltd.Google Scholar
Gehrels, GE, Blakey, R, Karlstrom, KE, Timmons, JM, Dickinson, B and Pecha, M (2011) Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere 3, 183200.CrossRefGoogle Scholar
Giannandrea, P, Loiacono, F, Maiorano, P, Lirer, F and Puglisi, D (2016) Geological map of the eastern sector of the Gorgoglione Basin (southern Italy). Italian Journal of Geosciences 135, 120–41.CrossRefGoogle Scholar
Guerrera, F and Martín-Martín, M (2014) Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys). Bulletin de la Societé Géologique de France 185, 329–41.CrossRefGoogle Scholar
Guerrera, F, Martín-Martín, M, Raffaelli, G and Tramontana, M (2015) The Early Miocene “Bisciaro volcaniclastic event” (northern Apennines, Italy): a key study for the geodynamic evolution of the central-western Mediterranean. International Journal Earth Science 104, 10831106.CrossRefGoogle Scholar
Guerrera, F, Martín-Martín, M and Tramontana, M (2019) Evolutionary geological models of the central-western peri-Mediterranean chains: a review. International Geology Review. doi: 10.1080/00206814.2019.1706056.Google Scholar
Helbing, H and Tiepolo, M (2005) Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. Journal of the Geological Society 162, 689700.CrossRefGoogle Scholar
Herron, MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820–9.Google Scholar
Horstwood, MS, Košler, J, Gehrels, G, Jackson, SE, McLean, NM, Paton, C and Bowring, JF (2016) Community derived standards for LA-ICP-MS U(Th) Pb geochronology: uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research 40, 311–32.CrossRefGoogle Scholar
Ingersoll, RV, Bullard, TF, Ford, RL, Grimm, JP, Pickle, JD and Sares, SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research 54, 103–16.Google Scholar
Langone, A, Caggianelli, A, Festa, V and Prosser, G (2014) Time constraints on the building of the Serre Batholith: consequences for the thermal evolution of the Hercynian continental crust exposed in Calabria (southern Italy). The Journal of Geology 122, 183–99.CrossRefGoogle Scholar
Lentini, F (1979) Le Unità Sicilidi della Val d’Agri (Appennino Lucano). Geologica Romana 18, 215–25.Google Scholar
Lentini, F and Carbone, S (2014) Geology of Sicily. Memorie descrittive della Carta Geologica d’Italia 95, 730.Google Scholar
Loiacono, F (1974) Osservazioni sulla direzione delle paleocorrenti nel Flysch di Gorgoglione (Lucania). Bollettino della Società Geologica Italiana 93, 1127–55.Google Scholar
Loiacono, F (1993) Geometrie e caratteri deposizionali dei corpi arenacei nella successione stratigrafica del Flysch di Gorgoglione (Miocene sup., Appennino meridionale). Bollettino della Società Geologica Italiana 112, 909–22.Google Scholar
Lowe, DR (1982) Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Malusà, MG, Carter, A, Limoncelli, M, Villa, I and Garzanti, E (2013) Bias in detrital zircon geochronology and thermochronometry. Chemical Geology 359, 90170.CrossRefGoogle Scholar
Malusà, MG and Garzanti, E (2019) The sedimentology of detrital thermochronology. In Fission-Track Thermochronology and Its Application to Geology (eds Malusà, M and Fitzgerald, P), pp. 123–43. Cham: Springer.CrossRefGoogle Scholar
Martín-Martín, M, Guerrera, F and Tramontana, M (2019) Geodynamic implications of the latest Chattian-Langhian central-western peri-Mediterranean volcano-sedimentary event: a review. The Journal of Geology 128, 2943.CrossRefGoogle Scholar
Micheletti, F, Barbey, P, Fornelli, A, Piccarreta, G and Deloule, E (2007) Latest Precambrian to Early Cambrian U-Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. International Journal of Earth Sciences 96, 843–60.CrossRefGoogle Scholar
Morton, AC and Hallsworth, CR (2007) Stability of detrital heavy minerals during burial diagenesis. In Heavy Minerals in Use (eds Mange, M and Wright, DK), pp. 215–45. Developments in Sedimentology 58.Google Scholar
Mutti, E (1992) Turbidite Sandstones. Parma: Agip, Istituto di Geologia, Università di Parma.Google Scholar
Mutti, E and Normark, WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In Marine Clastic Sedimentology (eds Leggett, JK and Zuffa, GG), pp. 138. London: Graham and Trotman.Google Scholar
Oggiano, G, Gaggero, L, Funedda, A, Buzzi, L and Tiepolo, M (2010) Multiple early Paleozoic volcanic events at the northern Gondwana margin: U–Pb age evidence from the Southern Variscan branch (Sardinia, Italy). Gondwana Research 17, 4458.CrossRefGoogle Scholar
Ogniben, L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana 8, 453763.Google Scholar
Paquette, J-L, Ménot, R-P, Pin, C and Orsini, J-B (2003) Episodic short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chemical Geology 198, 120.CrossRefGoogle Scholar
Patacca, E and Scandone, P (2007) Geology of the Southern Apennines. Bollettino della Società Geologica Italiana 7, 75119.Google Scholar
Pavanetto, P, Funedda, A, Northrup, CJ, Schmitz, M, Crowley, J and Loi, A (2012) Structure and U–Pb zircon geochronology in the Variscan foreland of SW Sardinia, Italy. Geological Journal 47, 426–45.CrossRefGoogle Scholar
Perri, F, Critelli, S, Cavalcante, F, Mongelli, G, Sonnino, M, Dominici, R and De Rosa, R (2012) Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geological Magazine 149, 423–42.CrossRefGoogle Scholar
Pescatore, T, Renda, P, Schiattarella, M and Tramutoli, M (1999) Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315, 269–86.CrossRefGoogle Scholar
Pescatore, TS and Senatore, M (1986) A comparison between a present-day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennines (Italy). In Foreland Basins (eds Allen, PA and Homewood, P), pp. 169–82. International Association of Sedimentologists, Special Publication 8.CrossRefGoogle Scholar
Pieri, P, Gallicchio, S, Sabato, L, Tropeano, M, Boenzi, F, Lazzari, M, Marino, M and Vitale, G (2017) Note illustrative della Carta geologica d’Italia, alla scala 1:50.000 Foglio 471 Irsina. ISPRA, System Cart, Roma.Google Scholar
Pinarelli, L, Bergomi, MA, Boriani, A and Giobbi, E (2008) Pre-metamorphic melt infiltration in metasediments: geochemical, isotopic (Sr, Nd, and Pb), and field evidence from Serie dei Laghi (Southern Alps, Italy). Mineralogy and Petrology 93, 213–42.CrossRefGoogle Scholar
Schaltegger, U and Corfu, F (1992) The age and source of late Hercynian magmatism in the central Alps: evidence from precise U−Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology 111, 329–44.CrossRefGoogle Scholar
Schenk, V (1980) U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, Southern Calabria (Italy). Contributions to Mineralogy and Petrology 73, 2338.CrossRefGoogle Scholar
Selli, R (1962) Il Paleogene nel quadro della geologia dell’Italia Meridionale. Memorie della Società Geologica Italiana 3, 733–89.Google Scholar
Società Geologica Italiana (SGI) (2005) Carta Geologica d’Italia, alla scala 1:50.000 Foglio 506 “Sant’Arcangelo”. APAT, S.EL.CA., Firenze.Google Scholar
Società Geologica Italiana (SGI) (2014) Carta Geologica d’Italia, alla scala 1:50.000 Foglio 490 “Stigliano”. ISPRA, System Cart, Roma.Google Scholar
Società Geologica Italiana (SGI) (2017a) Carta Geologica d’Italia, alla scala 1:50.000 Foglio 471 “Irsina”. ISPRA, System Cart, Roma.Google Scholar
Società Geologica Italiana (SGI) (2017b) Carta Geologica d’Italia, alla scala 1:50.000 Foglio 470 “Potenza”. ISPRA, System Cart, Roma.Google Scholar
Sharman, GR, Hubbard, SM, Covault, JA, Hinsh, R, Linzer, AG and Graham, SA (2018) Sediment routing evolution in the North Alpine Foreland Basin, Austria; interplay of tranverse and longitudinal sediment dispersal. Basin Research 30, 426–47.CrossRefGoogle Scholar
Spencer, CJ, Kirkland, CL and Taylor, RJM, (2016) Strategies towards statistically robust interpretations in situ U-Pb zircon geochronology. Geoscience Frontiers 7, 581–9.CrossRefGoogle Scholar
Speranza, F, Adamoli, L, Maniscalco, R and Florindo, F (2003a) Genesis and evolution of a curved mountain front; paleomagnetic and geological evidence from Gran Sasso Range (central Apennines, Italy). Tectonophysics 362, 183–97.CrossRefGoogle Scholar
Speranza, F, Maniscalco, R and Grasso, M (2003b) Pattern of orogenic rotations in central-eastern Sicily: implications for the timing of spreading in the Tyrrhenian Sea. Journal of the Geological Society, London 160, 183–95.CrossRefGoogle Scholar
Thomas, W (2011) Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3, 304–8.CrossRefGoogle Scholar
Trombetta, A, Cirrincione, R, Corfu, F, Mazzoleni, P and Pezzino, A (2004) Mid-Ordovician U-Pb ages of porphyroids in the Peloritan Mountains (NE Sicily): paleogeographic implications for the evolution of the Alboran microplate. Journal of the Geological Society, London 161, 113.CrossRefGoogle Scholar
Van Achterbergh, E, Ryan, C, Jackson, S and Griffin, W (2001) Data reduction software for LAICPMS. In Laser Ablation ICPMS in the Earth Science: Principles and applications (ed. Sylvester, P), pp. 239–43. Ottawa, Ontario: Mineralogical Association of Canada 29.Google Scholar
Van de Kamp, PC and Leake, BE (1995) Petrology and geochemistry of siliciclastic rocks of mixed feldspathic and ophiolitic provenance in the Northern Apennines, Italy. Chemical Geology 122, 120.CrossRefGoogle Scholar
Vermeesch, P (2012) On the visualization of detrital age distributions. Chemical Geology 312, 190–4.CrossRefGoogle Scholar
Williams, IS, Fiannacca, P, Cirrincione, R and Pezzino, A (2012) Peri-Gondwanian origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gondwana Research 22, 855–65.CrossRefGoogle Scholar
Supplementary material: File

Fornelli et al. supplementary material

Fornelli et al. supplementary material

Download Fornelli et al. supplementary material(File)
File 193 KB