Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-15T13:54:33.715Z Has data issue: false hasContentIssue false

Ammonite correlation of the uppermost Campanian of Western Europe, the U.S.Gulf Coast, Atlantic Seaboard and Western Interior, and the numerical age of the base of the Maastrichtian

Published online by Cambridge University Press:  01 May 2009

W. J. Kennedy
Affiliation:
Geological Collections, University Museum, Parks Road, Oxford OX1 3PW, U.K.
W. A. Cobban
Affiliation:
Mail Stop 919, Box 25046, U.S. Geological Survey, Federal Center, Denver, Colorado 80225, U.S.A.
G. R. Scott
Affiliation:
60 Estes Street, Lakewood, Colorado 80226, U.S.A.

Abstract

If the base of the Maastrichtian Stage is placed at the first appearance ofthe belemnite Belemnella lanceolata in Western Europe, the boundary between the Campanian and Maastrichtian stages in the U.S. Western Interiormay lie between the zones of Baculites jenseni and Baculites eliasi. The B. jenseni Zone can be shown to be latest Campanian in age on the basis of the occurrence of Nostoceras (N.) hyatti Stephenson and Jeletzkytes nodosus (Owen), which range to the top of the Campanian in the well-dated Vistula Valley sequence in Poland, but disappear before the first appearance of B. lanceolata. So defined the numerical age of the Maastrichtian lies between 73.2 ± 0.7 and 70.1 ±0.7 Ma, based upon dates from high temperature chronometers in bentonites in the Western Interior.

Type
Rapid Communications
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergstresser, T. J. & Frerichs, W. E. 1982. Planktonic for-aminifera from the Upper Cretaceous Pierre Shale at Red Bird, Wyoming. Journal of Foraminiferal Research 12, 353–61.Google Scholar
Birkelund, T., Hancock, J. M., Hart, M. B., Rawson, P. F., Remane, J., Robaszynski, F., Schmid, F. & Surlyk, F. 1984. Cretaceous stage boundaries – proposals. Bulletin of the Geological Society of Denmark 33,320.Google Scholar
Blaszkiewicz, A. 1980. Campanian and Maastrichtian ammonites of the Middle Vistula Valley, Poland: a stratigraphic-paleontological study. Prace Instytutu Geologiczneogo 92, 163, 56 pls.Google Scholar
Caron, M. 1985. Cretaceous planktic foraminifera. In Plankton Stratigraphy (eds. Bolli, H. et al. ), pp. 1786. Cambridge: Cambridge University Press.Google Scholar
Cobban, W. A. 1962. New baculites from the Bearpaw Shale and equivalent rocks of the Western Interior. Journal of Paleontology 36, 126–35, pls 25–28.Google Scholar
Cobban, W. A. 1974. Ammonites from the Navesink Formation at Atlantic Highlands, New Jersey. U.S. Geological Survey Professional Paper no. 845, 21 pp., 11 pls.Google Scholar
Collignon, M. 1971. Atlas des fossiles caractéristiques de Madagascar (Ammonites); Part 17, Maestrichtien, iv + 44 pp., pls 640–658. Tananarive: Service Géologique.Google Scholar
Eaton, J. G. 1987. The Campanian-Maastrichtian boundary in the Western Interior of North America. Newsletters on Stratigraphy 18, 31–9.Google Scholar
Hallam, A., Hancock, J. M., La Brecque, J. L., Lowrie, W. & Channell, J. E. T. 1985. Jurassic to Paleogene. Part 1. Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy. In The Chronologyof the Geological Record (ed. Snelling, N. J.), pp. 118–40. Geological Society of London Memoir no. 10.Google Scholar
Hancock, J. M. & Kauffman, E. G. 1989 Use of eustatic changes of sea level to fix Campanian Maastrichtian boundary in Western Interior of U.S.A. 28th International Geological Congress (Washington, D.C.), abstracts 2, p. 23.Google Scholar
Haq, B., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–66.Google Scholar
Haq, B., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. Society of Economic Paleontologists and Mineralogists Special Publication 42, 71108.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1989. A Geologic Timescale, 263 pp. Cambridge, New York, Port Chester, Melbourne: Cambridge University Press.Google Scholar
Howarth, M. K. 1965. Cretaceous ammonites and nautiloids from Angola. Bulletin of the British Museum (Natural History) (Geology) 10, 335412.Google Scholar
Jeletzky, J. A. 1968. Macrofossil Zones of the Marine Cretaceous of the Western Interior of Canada and their Correlation with Zones and Stages of Europe and the Western Interior. Geological Survey of Canada Paper no. 67–72, 66 pp.Google Scholar
Kennedy, W. J. & Odin, G. S. 1982. The Jurassic and Cretaceous time scale. In Numerical Dating in Stratigraphy, Vol. 1 (ed. Odin, G. S.), pp. 557–92. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley and Sons.Google Scholar
Kennedy, W. J. & Summesberger, H. 1987. Lower Maastrichtian ammonites from Nagoryany¯ (Ukrainian SSR). Beiträge zur Paläontologie von Österreich 13, 2578, 16 pls.Google Scholar
Kent, D. V. & Gradstein, F. M. 1985. A Cretaceous and Jurassic geochronology. Geological Society of American Bulletin 96, 1419–27.Google Scholar
Lewy, Z. 1969. Late Campanian heteromorph ammonites from southern Israel. Israel Journal of Earth Sciences 18, 109–35.Google Scholar
Lewy, Z. 1986. Anaklinoceras reflexum Stephenson in Israel and its stratigraphic significance. Newsletters on Stratigraphy 16, 18.Google Scholar
Marks, P. 1984. Proposal for the recognition of boundaries between Cretaceous stages by means of planktonic foraminiferal biostratigraphy. Bulletin of the Geological Society of Denmark 33, 163–9.Google Scholar
Obradovich, J. D. 1988. A different perspective on glauconite as a chronometer. Paleoceanography 3, 757–70.Google Scholar
Obradovich, J. D. & Cobban, W. A. 1975. A Time Scale for the Late Cretaceous of the Western Interior of North America. Geological Association of Canada Special Paper 13, 3154.Google Scholar
Perch-Nielsen, K. 1985. Mesozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. and others), pp. 327426. Cambridge: Cambridge University Press.Google Scholar
Pessagno, E. 1969. Upper Cretaceous Stratigraphy of the Western Gulf Coast Area, Mexico, Texas and Arkansas. Geological Society of America Memoir no. 111, 139 pp. 60 pls.CrossRefGoogle Scholar
Schulz, M. G. 1979. Morphometrisch-variationsstatistische Untersuchungen zur Phylogenie der Belemniten-Gattung Belem-nella im Untermaastricht NW Europas. Geologisches Jahrbuch A47, 157 pp.Google Scholar
Schulz, M. G., Ernst, G., Ernst, H. & Schmid, F. 1984. Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of N.W. Germany (Lägerdorf–Kronsmoor–Hemmoor): definitions and proposals. Bulletin of the Geological Society of Denmark 33, 203–15.Google Scholar
Stephenson, L. W. 1941. The Larger Invertebrate Fossils of the Navarro Group of Texas. Texas University Publication no. 4101, 641 pp.Google Scholar
Taylor, R. H. & Russell, E. A. 1986. The Globotruncana calcaratazone (latest Campanian) in the Demopolis Formation, Lowndes County, Mississippi. Geological Society of America Abstracts of Papers of the Southeastern and South-Central Sections, 1986, p. 268.Google Scholar
Thompson, L. B. 1991. Late Santonian to early Maastrichtian planktonic foraminiferal biostratigraphy and zonation of northeast Texas. Micropalaeontology Special Paper 5, 966, pls 1–6.Google Scholar
Wagreich, M. 1987. A contribution to the nannoflora of Nagoryany (UkrainianSSR; Upper Cretaceous). Beiträge zur Paläontologie von Österreich 13, 85–6.Google Scholar
Wiedmann, J. 1962. Ammoniten aus der Vascogotischen Kreide (Nordspanien). 1. Phylloceratina, Lytoceratina. Palaeontographica A118, 119237.Google Scholar