Skip to main content

Chambered structures from the Ediacaran Dengying Formation, Yunnan, China: comparison with the Cryogenian analogues and their microbial interpretation

  • CUI LUO (a1), BING PAN (a2) (a3) and JOACHIM REITNER (a4)

Enigmatic chambered structures have been reported forming reef frames in Cryogenian interglacial carbonates, prior to the commonly acknowledged microbial-metazoan reefs at the terminal Ediacaran, and interpreted as fossils of possible sponge-grade organisms. A better constraint on the affinity of these structures is partly hindered by few analogues in other time periods. This study describes similar structures from peritidal dolostones of the Ediacaran Denying Formation from Yunnan, China. Samples were investigated using optical microscopy and three-dimensional (3-D) reconstruction based on grinding tomography. The Dengying chambered structures are comparable with Cryogenian structures in basic construction, but are not frame building, and show variations in overall shape and inhabiting facies. Two-dimensional (2-D) cross-sections show that thin, homogeneous micritic laminae are the basic building blocks of the chamber walls. Thick walls represent parallel accretion of these laminae, and thin walls developed from the angular growth of a single lamina or merging of multiple laminae. In 3-D space, the laminae primarily correspond to continuous surfaces which sometimes contain sub-circular holes, while a few represent filamentous elements connected to the surfaces. The morphological features and growth pattern of the Dengying chambered structures indicate that they are likely to be calcified microbial constructions rather than skeletal remains of basic metazoans. However, aside from the Cryogenian and Dengying examples, comparable chambered constructions with laminae-based architecture are yet unknown from other fossil or extant microbialites. Further work investigating related structures is needed to determine the microbial consortia and controlling environmental factors that produced these chambered structures.

Corresponding author
Author for correspondence:
Hide All
Ahn S. Y. 2014. Basal Cambrian acritarchs biostratigraphy of the Yangtze Platform, South China. In 2014 GSA Annual Meeting, Vancouver, British Columbia, 19–22 October 2014.
Antcliffe J. B., Callow R. H. T. & Brasier M. D. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89, 9721004.
Bosak T., Bush J. W. M., Flynn M. R., Liang B., Ono S., Petroff A. P. & Sim M. S. 2010. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats: formation and stability of oxygen-rich bubbles. Geobiology 8, 4555.
Bosak T., Liang B., Sim M. S. & Petroff A. P. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites. Proceedings of the National Academy of Sciences 106, 10939–43.
Brain C. K. ‘Bob’, Prave A. R., Hoffmann K.-H., Fallick A. E., Botha A., Herd D. A., Sturrock C., Young I., Condon D. J. & Allison S. G. 2012. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. South African Journal of Science 108, 658–65.
Cherchi A. & Schroeder R. 2012. Revision of the holotype of Lithocodium aggregatum Elliott, 1956 (Lower Cretaceous, Iraq): new interpretation as sponge–calcimicrobe consortium. Facies 59, 4957.
Condon D., Zhu M., Bowring S., Wang W., Yang A. & Jin Y. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308 (5718), 95–8.
Erwin D. H. 2015. Was the Ediacaran–Cambrian radiation a unique evolutionary event? Paleobiology 41, 115.
Flügel E. 2010. Cyanobacteria and calcimicrobes. In Microfacies of Carbonate Rocks, pp. 408–12. Berlin Heidelberg: Springer.
Giddings J. A., Wallace M. W. & Woon E. M. S. 2009. Interglacial carbonates of the Cryogenian Umberatana Group, northern Flinders Ranges, South Australia. Australian Journal of Earth Sciences 56, 907–25.
Grotzinger J., Adams E. W. & Schröder S. 2005. Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geological Magazine 142, 499517.
Grotzinger J. P., Watters W. A. & Knoll A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 334–59.
Hartman W. D. 1969. New genera and species of coralline sponges (Porifera) from Jamaica. Postilla 137, 139.
Hartman W. D. & Goreau T. F. 1970. Jamaican corralline sponges: their morphology, ecology and fossil relatives. In The Biology of the Porifera (ed. Fry W. G.), pp. 205–43. Symposia of the Zoological Society of London 25. New York: American Press.
Knoll A. H., Wörndle S. & Kah L. C. 2013. Covariance of microfossil assemblages and microbialite textures across an Upper Mesoproterozoic carbonate platform. Palaios 28, 453–70.
Le Ber E., Le Heron D. P., Winterleitner G., Bosence D. W. J., Vining B. A. & Kamona F. 2013. Microbialite recovery in the aftermath of the Sturtian glaciation: insights from the Rasthof Formation, Namibia. Sedimentary Geology 294, 112.
Lenton T. M., Boyle R. A., Poulton S. W., Shields-Zhou G. A. & Butterfield N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7, 257–65.
Maloof A. C., Rose C. V., Beach R., Samuelsson B. M., Calmet C. C., Erwin D. H., Poirier G. R., Yao N. & Simons F. J. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience 3, 653–9.
Müller-Wille S. & Reitner J. 1993. Palaeobiological reconstruction of selected sphinctozoan sponges from the Cassian Beds (Lower Carnian) of the dolomites (Northern Italy). Berliner Geowissenschafte Abhandlungen (E) 9, 253–81.
Neuweiler F. & Reitner J. 1992. Karbonatebänke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoicic. Paläobathymetrie, paläoökologie und stratigraphisches äquivalent zu thrombolithischen Mud Mounds. Berliner Geowissenschafte Abhandlungen 3, 273–93.
Neuweiler F., Turner E. C. & Burdige D. J. 2009. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology 37, 475–8.
Penny A. M., Wood R., Curtis A., Bowyer F., Tostevin R. & Hoffman K.-H. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344 (6191), 1504–6.
Pratt B. R. 1984. Epiphyton and Renalcis-diagenetic microfossils from calcification of coccoid blue-green algae. American Association of Petroleum Geologists Bulletin 54, 948–71.
Reitner J., Wörheide G., Lange R. & Schumann-Kindel G. 2001. Coralline demosponges: a geobiological portrait. Bulletin of the Tohoku University Museum 1, 219–35.
Riding R. 1991. Calcified Cyanobacteria. In Calcareous Algae and Stromatolites (ed. Riding R.), pp. 5587. Berlin, Heidelberg: Springer.
Riding R. & Voronov A. 1985. Morphological groups and series in Cambrian calcareous algae. In Paleoalgology: Contemporary Research and Applications (eds Toomey D. F. & Nitecki M. H.), pp. 5678. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.
Rivera M. J. & Sumner D. Y. 2014. Unraveling the three-dimensional morphology of Archean microbialites. Journal of Paleontology 88, 719–26.
Schlagintweit F. & Bover-Arnal T. 2013. Remarks on Bačinella Radoičić, 1959 (type species B. irregularis) and its representatives. Facies 59, 5973.
Schlagintweit F., Bover-Arnal T. & Salas R. 2010. New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic–Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56, 509–47.
Stearn C. W. 1975. The stromatoporoid animal. Lethaia 8, 89100.
Stearn C. W. 2010. Part E, Revised, Volume 4, Chapter 9F: Functional morphology of the Paleozoic stromatoporoid skeleton. Treatise Online 8, 126.
Stearn C. W., Webby B. D., Nestor H. & Stock C. W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44, 170.
Sumner D. Y. 1997. Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios 12, 302–18.
Sumner D. Y. 2000. Microbial vs environmental influences on the morphology of Late Archean fenestrate microbialites. In Microbial Sediments (eds Riding R. & Awramik S.), pp. 307–14. Berlin, Heidelberg: Springer.
Turner E. C., Narbonne G. M. & James N. P. 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology 21, 259–62.
Vacelet J. 2002. Recent ‘Sphinctozoa’, Order Verticillitida, Family Verticillitidae Steinmann, 1882. In Systema Porifera (eds Hooper J. N. A., Soest R. W. M. V. & Willenz P.), pp. 1097–8. New York: Springer US.
Wallace M. W., Hood A. V. S., Woon E. M. S., Giddings J. A. & Fromhold T. A. 2015. The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: implications for Neoproterozoic ocean chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 417, 320–36.
Wallace M. W., Hood A. V. S., Woon E. M. S., Hoffmann K.-H. & Reed C. P. 2014. Enigmatic chambered structures in Cryogenian reefs: the oldest sponge-grade organisms? Precambrian Research 255, 109–23.
Warren J. K. 2006. Chapter 1: Interpreting evaporite texture. In Evaporites: Sediments, Resources and Hydrocarbons, pp. 157. Berlin, Heidelberg: Springer.
Wilmeth D. T., Corsetti F. A., Bisenic N., Dornbos S. Q., Oji T. & Gonchigdorj S. 2015. Punctuated growth of microbial cones within Early Cambrian oncoids, Bayan Gol Formation, Western Mongolia. Palaios 30, 836–45.
Wood A. 1948. Sphaerocodium’ a misinterpreted fossil from the Wenlock limestone. Proceedings of the Geologists’ Association 59, 922, IN2–IN5.
Wood R. 1991. Non-spicular biomineralization in calcified demosponges. In Fossil and Recent Sponges (eds Reitner J. & Keupp H.), pp. 322–40. Berlin, Heidelberg: Springer-Verlag.
Wood R. & Curtis A. 2015. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology 13, 112–22.
Yang B., Steiner M., Zhu M., Li G., Liu J. & Liu P. 2016. Transitional Ediacaran–Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution. Precambrian Research 285, 202–15.
Yunnan Bureau of Geology and Mineral Resources. 1995. Atlas of the Sedimentary Facies and Palaeogeography of Yunnan. Kunming: Yunnan Science and Technology Press, 210 pp.
Zhu T. & Luo A. 1992. First discovery of an oldest Renalcis mound facies and its geological significance – an example from the upper Sinian Dengying Formation in northeastern Yunnan. Sedimentary Geology and Tethyan Geology 1992 (4), 20–8.
Zhu M., Zhang J. & Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 761.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Luo et al supplementary material
Luo et al supplementary material 2

 Video (59.4 MB)
59.4 MB
Supplementary materials

Luo et al supplementary material
Luo et al supplementary material 1

 Video (7.1 MB)
7.1 MB


Full text views

Total number of HTML views: 5
Total number of PDF views: 69 *
Loading metrics...

Abstract views

Total abstract views: 228 *
Loading metrics...

* Views captured on Cambridge Core between 29th August 2017 - 20th January 2018. This data will be updated every 24 hours.